Автор работы: Пользователь скрыл имя, 19 Декабря 2010 в 18:45, доклад
Рассмотрим произвольную площадку ds, расположенную на плоской наклонной стенке сосуда с жидкостью на расстоянии Y от оси X, и определим силы, действующие на эту площадку.
Рассмотрим произвольную площадку ds, расположенную на плоской наклонной стенке сосуда с жидкостью на расстоянии Y от оси X, и определим силы, действующие на эту площадку. Сила от давления, действующего на элементарную площадку dS, будет описываться формулой:
Если проинтегрировать это выражение по площади, можно определить полную силу, действующую на всю площадь целиком
Из рисунка ясно, что в последнем выражении . Подставив значение h в предыдущее выражение, будем иметь:
Из теоретической механики известно, что интеграл есть ни что иное, как статический момент площади Sотносительно оси 0X. Он равен произведению этой площади на координату её центра тяжести, т.е. можно записать
где Yс – расстояние от оси X до центра тяжести площади S.
Подставив формулу момента в выражение силы, получим:
Анализ второго слагаемого показывает, что произведение это глубина положения центра тяжести площадки, а - избыточное давление жидкости в центре тяжести площадки. С учётом этого можно записать
Сумма в скобках в последнем выражении является абсолютным давлением в центре тяжести рассматриваемой произвольной площадки. Таким образом, можно сделать вывод: полная сила давления жидкости на плоскую стенку равна произведению её площади на величину гидростатического давления в центре тяжести этой стенки.
Однако необходимо учесть, что эта сила не сконцентрирована в точке, а распределена по площади. И распределение это неравномерно. По этой причине для расчётов, кроме величины силы действующей на наклонную площадку, необходимо знать точку приложения равнодействующей.
Чаще всего необходимо определить силу, действующую на цилиндрическую поверхность, имеющую вертикальную ось симметрии. Возможны два варианта. Первый вариант - жидкость воздействует на стенку изнутри.
Во втором варианте жидкость действует на стенку снаружи. Рассмотрим оба этих варианта.
В первом случае выделим объём жидкости, ограниченный рассматриваемым участком цилиндрической поверхности AB, участком свободной поверхности CD, расположенным над участком AB, и двумя вертикальными поверхностями BC и CD, проходящими через точки A и B. Эти поверхности ограничивают объём ABCD, который находится в равновесии. Рассмотрим условия равновесия этого объёма в вертикальном и горизонтальном направлениях. Заметим, что, если жидкость действует на поверхность AB, cкакой то силой F, то с такой же силой, но в обратном направлении, и поверхность действует на рассматриваемый объём жидкости. Эту силу, перпендикулярную поверхности AB, можно представить в виде горизонтальной Fги вертикальной Fвсоставляющих.
Условие равновесия объёма ABCD в вертикальном направлении выглядит, так:
;
где P0 – внешнее давление,
Sг – площадь горизонтальной проекции поверхности AB,
G – вес выделенного объёма жидкости.
Условие равновесия этого объёма в горизонтальной плоскости запишем с учётом того, что силы, действующие на одинаковые вертикальные поверхности AD и CE, взаимно уравновешиваются. Остаётся только сила давления на площадь BE, которая пропорциональна вертикальной проекции Sвповерхности AB. С учётом частичного уравновешивания будем иметь условие равновесия сил в горизонтальном направлении в виде:
где hс- глубина расположения центра тяжести поверхности AB.
Зная Fг и Fв определим полную силу F, действующую на цилиндрическую поверхность
Во втором случае, когда жидкость воздействует на цилиндрическую поверхность снаружи, величина гидростатического давления во всех точках поверхности AB имеет те же значения, что и в первом случае, т.к. определяется такой же глубиной. Силы, действующие на поверхность в горизонтальном и вертикальном направлениях, определяются по тем же формулам, но имеют противоположное направление. При этом под величиной G надо понимать тот же объём жидкости ABCD, несмотря на то, что на самом деле он, в данном случае и не заполнен жидкостью.
Положение центра давления на цилиндрической стенке легко можно найти, если известны силы Fг и Fви определены центр давления на вертикальной проекции стенки и центр тяжести рассматриваемого объёма ABCD. Задача упрощается, если рассматриваемая поверхность является круговой, т.к. равнодействующая сила при этом пересекает ось поверхности. Это происходит из-за того, что силы давления всегда перпендикулярны поверхности, а перпендикуляр к окружности всегда проходит через её центр.
Информация о работе Сила давления жидкости на плоскую стенку