Передача информации по физическим каналам связи в соответствии со стандартом RS-232C

Автор работы: Пользователь скрыл имя, 06 Апреля 2012 в 01:54, курсовая работа

Краткое описание

Целью данной курсовой работы является ознакомиться с возможностями передачи информации, посредством сетей передачи данных и стандарта RS-232C. Для этого будет подробно рассмотрен стандарт RS-232 его принцип работы и интерфейс, а также архитектура сетей передачи данных.

Содержание работы

Введение…………………………………….………………........................................................3
1 Физический уровень стандарта RS-232………………………………………………………4
1.1 Сигналы интерфейса…………………………………………………………………………4
1.2 Соединения по интерфейсу RS-232. Кабели……………………………………………...14
1.3 Ограничения интерфейса RS-232………………………………………………………….19 2 Логический уровень…………………………………………………………………………..20
2.1 Последовательные порты…………………………………………………………………..20 2.2 Аппаратная реализация…………………………………………………………………….22 3 Сети передачи данных………………………………………………………………………..26
3.1 Топологии сетей…………………………………………………………………………….26
Заключение……………………………………………………………………………………...31
Список использованных источников………………………………………………………….32

Содержимое работы - 1 файл

Курсовая.doc

— 965.50 Кб (Скачать файл)


Министерство общего и профессионального образования

Российской Федерации

САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

им. Н.Г.Чернышевского

 

 

 

Кафедра

материаловедения, технологии и

управления качеством

 

 

 

 

 

 

 

 

Передача информации  по физическим каналам связи в соответствии со стандартом RS-232C

 

 

Курсовая работа студента 2 курса факультета нано- и

биомедицинских технологий

Нурушева Айдара Гайсановича

 

 

 

 

 

 

Научный руководитель

профессор, д.т.н.              ______________                            В.В. Симаков

 

Зав. кафедрой

профессор, д.ф.-м.н.               ______________                                        С.Б.Вениг

 

 

 

 

 

 

 

Саратов 2010

Содержание

 

 

Введение…………………………………….………………........................................................3

1 Физический уровень стандарта RS-232………………………………………………………4

1.1 Сигналы интерфейса…………………………………………………………………………4

1.2 Соединения по интерфейсу RS-232. Кабели……………………………………………...14

1.3 Ограничения интерфейса RS-232………………………………………………………….19   2 Логический уровень…………………………………………………………………………..20

2.1 Последовательные порты…………………………………………………………………..20 2.2 Аппаратная реализация…………………………………………………………………….22 3 Сети передачи данных………………………………………………………………………..26

3.1 Топологии сетей…………………………………………………………………………….26

Заключение……………………………………………………………………………………...31

Список использованных источников………………………………………………………….32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Введение

     RS-232 - интерфейс передачи информации между двумя устройствами на расстоянии до 20 м. Информация передается по проводам с уровнями сигналов, отличающимися от стандартных 5В, для обеспечения большей устойчивости к помехам. Асинхронная передача данных осуществляется с установленной скоростью при синхронизации уровнем сигнала стартового импульса.

     Интерфейс RS-232-C был разработан для простого применения, однозначно определяемого по его названию "Интерфейс между терминальным оборудованием и связным оборудованием с обменом по последовательному двоичному коду". Каждое слово в названии значимое, оно определяет интерфейс между терминалом (DTE) и модемом (DCE) по передаче последовательных данных.

     Стандарт RS-232 в общем случае описывает четыре интерфейсные функции:

     1) определение управляющих сигналов через интерфейс;

     2) определение формата данных пользователя, передаваемых через         интерфейс;

     3)  передачу тактовых сигналов для синхронизации потока данных;

     4) формирование электрических характеристик интерфейса.

     Этот стандарт и сейчас широко применяется для межсистемной коммуникации; простота, гибкость и длинная история успешного применения данного интерфейса являются залогом его популярности.

     Целью данной курсовой работы является ознакомиться с возможностями передачи информации, посредством сетей передачи данных и стандарта RS-232C. Для этого будет подробно рассмотрен стандарт RS-232 его принцип работы и интерфейс, а также  архитектура сетей передачи данных. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     1 Физический уровень

  1.1 Сигналы интерфейса RS-232

 

     Интерфейс RS-232 является последовательным асинхронным интерфейсом. Последовательная передача означает, что данные передаются по единственной линии. Для синхронизации битам данных предшествует специальный стартовый бит, после битов данных следует бит паритета и один или два стоповых бита. Такая группа битов совместно со стартовым и стоповым битом, а также битом паритета носит название старт-стопного символа.[1]

     Каждый старт-стопный символ, как правило, содержит один информационный символ, например символ американского стандартного кода для обмена информацией ASCII (American Standard Code for Information Interchange). Символы ASCII представляются семью битами. Так например, латинская буква А имеет код 1000001. Для передачи символов по интерфейсу RS-232 наибольшее распространение получил формат, включающий в себя один стартовый бит, один бит паритета и два стоповых бита. Соответствующий сигнал с уровнями транзисторно-транзисторной логики (ТТЛ) при передаче буквы А показан на рис. 1, а.    Начало асинхронного символа всегда отмечает низкий уровень стартового бита. После него следуют 7 бит данных символа кода ASCII. Бит паритета устанавливается в «1» или «О» так, чтобы общее число единиц в 8-ми битной группе было нечетным (нечетный паритет — нечетность) или четным (четный паритет — четность). Последними передаются два стоповых бита, представленных высоким уровнем напряжения.

Рисунок 1 -  «Представление кода буквы А уровнями ТТЛ (а) и на сигнальных линиях интерфейса RS-232 (б)»

     Часто используются национальные расширения кода ASCII, который полностью включает в себя 128 стандартных ASCII-символов и дополнительно содержит еще 128 символов с единицей в старшем бите. Среди дополнительных символов используются буквы ряда европейских алфавитов, буквы греческого алфавита, математические символы и символы псевдографики. В России наибольшее распространение получила альтернативная кодировка ASCII. Число всех символов расширенного кода ASCII равно 256 и, следовательно, каждый такой символ кодируется восьмью битами (2=256). Удобнее передавать каждый символ расширенной кодировки в виде отдельного старт-стопного символа. Поэтому часто используется формат, состоящий из одного стартового бита, восьми информационных и одного стопового бита. При этом бит паритета не используется.

      Таким образом, полный асинхронно передаваемый символ данных состоит из 10—11 бит при том, что собственно пользовательские данные состоят из 7—8 бит. Для приведенного примера старт-стопный символ, соответствующий букве А, состоит из 11 бит и записывается в виде

01000001011. Здесь используется четный паритет, поэтому девятый бит содержит 0.

     Используемые в интерфейсе RS-232 уровни сигналов отличаются от уровней сигналов, действующих в модеме или компьютере. Логический О (SPACE) представляется положительным напряжением в диапазоне от +3 до +25В, а логическая 1 (MARK) — отрицательным напряжением в диапазоне от —3 до —25В. На рис. 1, б показан асинхронный сигнал для буквы А в том виде, в каком он присутствует на линиях TxD или RxD интерфейса RS-232.

     Каждая линия интерфейса задается своим функциональным описанием. Все линии обмена сигналами между DTE и DCE, определяемые стандартом RS-232, можно разбить на четыре основные группы. Это линии данных, управления, синхронизации и линии сигнальной и защитной "земли". Все эти линии перечислены в табл. 1. В табл. 1, также приведены соответствующие обозначения стандарта V.24. Кроме того, указано направление передачи сигналов между DTE и DCE. Ниже приведем описание всех линий интерфейса RS-232.

     Сигнальная "земля" (АВ).

     Эта линия является общим проводом для всех электрических цепей, образуемых линиями физического интерфейса. Стандарт рекомендует присоединять этот общий провод к защитной "земле" путем внутреннего соединения в DCE. Смысл такого соединения заключается в том, что корпуса устройств оказываются заземленными через штепсельную розетку.

     Защитная "земля" (АД)

     Эта линия присутствует только в интерфейсе с разъемом DB-25 и предполагает соединение с корпусом устройства.

    Передаваемые данные (ВА)

     Сигналы, которые присутствуют на этой линии, вырабатываются местным (локальным) DTE для передачи местному DCE. Посылаемые сигналы могут быть кодами команд, управляющих работой местного DCE (АТ-команды или другие), или данными, которые местное DCE должно передать удаленному DCE-устройству.

      Если DTE не передает данные, то оно удерживает эту линию в состоянии логической 1 (MARK). Это свойство можно использовать для того, чтобы отличить DTE от DCE. Согласно стандарта DTE не будет передавать данные до тех пор,, пока управляющие линии "Запрос передатчика", "Сброс передатчика", "Готовность DCE" и "Готовность DTE" не будут находится одновременно в активном (ON) состоянии.

     Независимо от того, относится ли данное устройство к DTE или DCE, рассматриваемая линия всегда называется одинаково: "Передаваемые данные". Это выходная линия для DTE и входная для DCE.

     Принимаемые данные (ВВ)

     Если не выполняется операция подтверждения приема команды, стандартное DCE удерживает эту линию в состоянии логической 1 (MARK) при условии, что линия "Указатель несущей" находится в неактивном состоянии (OFF). Данное свойство также можно использовать для того, чтобы отличить DTE от DCE.

     При полудуплексной работе эта линия удерживается в состоянии MARK, когда линия "Запрос передачи" находится в активном состоянии, а также в течение короткого промежутка времени после ее перехода из активного состояние в неактивное.

     Независимо от того, относится ли данное устройство к DTE или DCE, рассматриваемая линия всегда называется одинаково: "Принимаемые данные". Это выходная линия для DCE и входная для DTE.

     Запрос передачи (СА)

     Сигналы на этой линии вырабатывает DTE. В симплексных или дуплексных системах активное состояние этой линии обеспечивает удержание DCE в режиме передачи. Переключение в неактивное состояние приостанавливает передачу. В обоих случаях состояние этой линии никак не влияет на работу DCE-устройства как приемника.

В полудуплексных системах переключение этой линии в активное состояние переводит DCE в режим передачи и приостанавливает его работу на прием. Когда DTE переключает эту линию в неактивное состояние, соответствующее DCE-устройство начинает работать в режиме приема.

     Если DTE переключило линию "Запрос передачи" в неактивное состояние, оно не должно снова активизировать эту линию до тех пор, пока DCE-устройство не подтвердит прием этого сигнала путем переключения в такое же неактивное состояние линии "Готовность к передаче".

     Переключение линии "Запрос передачи" из неактивного в активное состояние является сигналом на переход DCE в режим передачи. DCE может затем выполнять любые действия, необходимые для подготовки к передаче, и после их завершения устанавливает линию "Готовность к передаче" в активное состояние, сообщая тем самым, что DCE может передавать данные.

     Переключение линии "Запрос передачи" из активного в неактивное состояние является сигналом для DCE на завершение обработки любых данных, которые уже получены от DTE-устройства. Затем DCE прекращает передачу или переходит в режим приема. О завершении этого процесса оно сообщает путем переключения линии "Готовность к передаче" в неактивное состояние.

     Готовность к передаче (СВ)

     Сигналы на этой линии вырабатывает DCE. Эти сигналы сообщают о готовности DCE к приему данных от связанного с ним DTE-устройства. Если линия "Готовность к передаче" находится в неактивном состоянии, DTE не должно передавать данные. Когда DCE переключает эту линию в активное состояние, оно готово принимать данные. Эти данные могут быть командами для DCE или данными, передаваемыми по каналу связи.

Обычно сигнал "Готовность к передаче" является ответом на сигнал "Запрос передачи". Однако DCE может независимо переключить линию "Готовность к передаче" в неактивное состояние, чтобы сообщить DTE о необходимости приостановки передачи данных на некоторый конечный промежуток времени. Любые данные, переданные после переключения линии "Готовность к передаче" в неактивное состояние, могут быть проигнорированы DCE-устрой-ством. DCE может снова активизировать эту линию в любой момент при условии, что линия "Запрос передачи" также находится в активном состоянии. Такая процедура хорошо известна как аппаратное управление потоком данных.

     Если линия "Запрос передачи" не используется, DCE будет работать так, будто эта линия все время находится в активном состоянии. 

    Готовность DCE (СС)

     DCE использует эту линию для информирования DTE о своей готовности к работе. Для соответствующего сигнала часто используется название: "Готовность устройства сопряжения" или "Готовность модема". Активное состояние линии означает, что DCE готово обмениваться информацией с DTE и начать передачу данных.

     В некоторых реализациях данная линия в комбинации с линией "Индикатор тестирования" используется для управления обменом сигналами при тестировании и обслуживании DCE. В других случаях эта линия используется вместе с линией "Готовность к передаче" для

управления и программирования DCE, поддерживающего последовательную систему автоматического вызова.

Информация о работе Передача информации по физическим каналам связи в соответствии со стандартом RS-232C