Виды носителей информации. Хранение информации

Автор работы: Пользователь скрыл имя, 14 Января 2012 в 15:00, реферат

Краткое описание

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Содержание работы

Введение……………………………………………………………………… 3
1. Виды носителей информации………………………………………….. 5
2. Хранение информации………………………………………………….. 10
3. Файловые системы………………………………………………………. 12
Заключение…………………………………………………………………... 15
Список использованной литературы…………………………………….. 16

Содержимое работы - 1 файл

006. Титульный лист контрольной работы.doc

— 149.29 Кб (Скачать файл)

Флэш-память (англ. Flash-Memory) -- разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи -- это намного больше, чем способна выдержать дискета или CD-RW. Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка (это ограничение относится к самому популярному на сегодня типу флэш-памяти -- NAND). Преимуществом флэш-памяти над обычной является её энергонезависимость -- при выключении энергии содержимое памяти сохраняется. Преимуществом флэш-памяти над жёсткими дисками, CD-ROM-ами, DVD является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ.

 
 
 
 
 
 

    2. ХРАНЕНИЕ ИНФОРМАЦИИ

 

    2.1. ХРАНЕНИЕ ИНФОРМАЦИИ

Хранение информации -- это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга -- библиотека, картина -- музей, фотография -- альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

 

    2.2. ОТ ИНФОРМАЦИИ К ДАННЫМ

Человек по-разному подходит к хранению информации. Все зависит от того сколько ее и как долго ее нужно хранить. Если информации немного ее можно запомнить в уме. Нетрудно запомнить имя своего друга и его фамилию. А если нужно запомнить его номер телефона и домашний адрес мы пользуемся записной книжкой. Когда информация запомнена (сохранена) ее называют данные.

Данные в компьютере имеют различное назначение. Некоторые из них нужны только в течение короткого периода, другие должны храниться длительное время. Вообще говоря, в компьютере есть довольно много «хитрых» устройств, которые предназначены для хранения информации. Например, регистры процессора, регистровая КЭШ-память и т.п. Но большинство «простых смертных» даже не слышали таких «страшных» слов. Поэтому мы ограничимся рассмотрением оперативной памяти (ОЗУ) и постоянной памяти, к которой относятся уже рассмотренные нами носители информации.

 

    2.3. ОПЕРАТИВНАЯ ПАМЯТЬ КОМПЬЮТЕРА

Как уже было сказано, в компьютере тоже есть несколько средств для хранения информации. Самый быстрый способ запомнить данные -- это записать их в электронные микросхемы. Такая память называется оперативной памятью. Оперативная память состоит из ячеек. В каждой ячейке может храниться один байт данных.

У каждой ячейки есть свои адрес. Можно считать, что это как бы номер ячейки, поэтому такие ячейки еще называют адресными ячейками. Когда компьютер отправляет данные на хранение в оперативную память, он запоминает адреса, в которые эти данные помещены. Обращаясь к адресной ячейке, компьютер находит в ней байт данных.

Регенерация оперативной памяти

Адресная ячейка оперативной памяти хранит один байт, а поскольку байт состоит из восьми битов, то в ней есть восемь битовых ячеек. Каждая битовая ячейка микросхемы оперативной памяти хранит электрический заряд.

Заряды не могут храниться в ячейках долго -- они «стекают». Всего за несколько десятых долей секунды заряд в ячейке уменьшается настолько, что данные утрачиваются.

 

    2.4. ДИСКОВАЯ ПАМЯТЬ

Для постоянного хранения данных используют носители информации (см. раздел «Виды носителей информации»). Компакт диски и дискеты имеют относительно небольшое быстродействие, поэтому большая часть информации, к которой необходим постоянный доступ, хранится на жестком диске. Вся информация на диске хранится в виде файлов. Для управления доступом к информации существует файловая система. Имеется несколько типов файловых систем.

 

2.5. СТРУКТУРА ДАННЫХ

Чтобы данные можно было не только записать на жесткий диск, а потом еще и прочитать, надо точно знать, что и куда было записано. У всех данных должен быть адрес. У каждой книги в библиотеке есть свой зал, стеллаж, полка и инвентарный номер -- это как бы ее адрес. По такому адресу книгу можно найти. Все данные, которые записываются на жесткий диск, тоже должны иметь адрес, иначе их не разыскать

 
 
 
 

    3. ФАЙЛОВЫЕ СИСТЕМЫ

 

    3.1ФАЙЛОВЫЕ СИСТЕМЫ

Стоит отметить, что структура данных на диске зависит от типа файловой системы. Все файловые системы состоят из структур, необходимых для хранения и управления данными. Эти структуры обычно включают загрузочную запись операционной системы, каталоги и файлы. Файловая система также исполняет три главных функции:

Отслеживание занятого и свободного места

Поддержка имен каталогов и файлов

Отслеживание физического местоположения каждого файла на диске.

Различные файловые системы используются различными операционными системами (ОС). Некоторые OС могут распознавать только одну файловую систему, в то время как другие OС могут распознавать несколько. Некоторые из наиболее распространенных файловых систем:

       - FAT (File Allocation Table)

       - FAT32 (File Allocation Table 32)

       - NTFS (New Technology File System)

       - HPFS (High Performance File System)

       - NetWare File System

       - Linux Ext2 и Linux Swap

FAT

Файловая система FAT используется DOS, Windows 3.x и Windows 95. Файловая система FAT также доступна в Windows 98/Me/NT/2000 и OS/2.

Файловая система FAT реализуется при помощи File Allocation Table (FAT - Таблицы Распределения Файлов) и кластеров. FAT - сердце файловой системы. Для безопасности FAT имеет дубликат, чтобы защитить ее данные от случайного стирания или неисправности. Кластер - самая маленькая единица системы FAT для хранения данных. Один кластер состоит из фиксированного числа секторов диска. В FAT записано, какие кластеры используются, какие являются свободными, и где файлы расположены в пределах кластеров.

FAT-32

FAT32 - файловая система, которая может использоваться Windows 95 OEM Service Release 2 (версия 4.00.950B), Windows 98, Windows Me и Windows 2000. Однако, DOS, Windows 3.x, Windows NT 3.51/4.0, более ранние версии Windows 95 и OS/2 не распознают FAT32 и не могут загружать или использовать файлы на диске или разделе FAT32.

FAT32 - развитие файловой системы FAT. Она основана на 32-битовой таблице распределения файлов, более быстрой, чем 16-битовые таблицы, используемые системой FAT. В результате, FAT32 поддерживает диски или разделы намного большего размера (до 2 ТБ).

NTFS

NTFS (Новая Технология Файловой Системы) доступна только Windows NT/2000 . NTFS не рекомендуется использовать на дисках размером менее 400  МБ, потому что она требует много места для структур системы.

Центральная структура файловой системы NTFS - это MFT (Master File Table). NTFS сохраняет множество копий критической части таблицы для защиты от неполадок и потери данных.

HPFS

HPFS (Файловая система с высокой производительностью) - привилегированная файловая система для OS/2, которая также поддерживается старшими версиями Windows NT.

В отличие от файловых систем FAT, HPFS сортирует свои каталоги, основываясь на именах файлов. HPFS также использует более эффективную структуру для организации каталога. В результате доступ к файлу часто быстрее и место используется более эффективно, чем с файловой системой FAT.

HPFS распределяет данные файла в секторах, а не в кластерах. Чтобы сохранить дорожку, которая имеет секторы или не используется, HPFS организовывает диск или раздел в виде групп по 8 МБ. Такое группирование улучшает производительность, потому что головки чтения/записи не должны возвращаться на нулевую дорожку каждый раз, когда ОС нуждается в доступе к информации о доступном месте или местоположении необходимого файла.

NetWare File System

Операционная система Novell NetWare использует файловую систему NetWare, которая была разработана специально для использования службами NetWare.

Linux Ext2 и Linux Swap

Файловые системы Linux Ext2 и Linux были разработаныtti для ОС Linux OS (Версия UNIX для свободно распространения). Файловая система Linux Ext2 поддерживает диск или раздел с максимальным размером 4 ТБ.

 

    3.2. КАТАЛОГИ И ПУТИ К ФАЙЛУ

Рассмотрим для примера структуру дискового пространства системы FAT, как самой простой.

Информационная структура дискового пространства - это внешнее представление дискового пространства, ориентированное на пользователя и определяемое такими элементами, как том (логический диск), каталог (папка, директория) и файл. Эти элементы используются при общении пользователя с операционной системой. Общение осуществляется с помощью команд, выполняющих операции доступа к файлам и каталогам.

 
 
 
 
 
 
 

ЗАКЛЮЧЕНИЕ

 

  В этой работе я попыталась представить наиболее известные на данный момент машинные носители информации. Возможно, в ближайшее время мы увидим новые интересные образцы с большим объемом памяти, большей скоростью чтения/записи. А вот кто из них удержится на рынке, во многом будет зависеть от их цены и нас потребителей.

  Уже сейчас многие специалисты в области оптических устройств хранения данных предполагают, что после следующего поколения DVD на сцену выйдет голографическая технология. Уже на нынешнем этапе своего развития эта технология позволяет записывать на одностороннем диске диаметром 120 мм около одного терабайта информации. На проходившей с 16 по 18 июля 2002 г выставке InterOpto'02 специалисты компании Optware продемонстрировали прототипы накопителя и носителей, использующих голографическую запись. Представленный образец голографического диска имеет емкость 200 Гбайт и позволяет производить чтение и запись данных со скоростью до 130 Мбит/с.

  Исследования ведутся и в нанотехнологии. Летом 2002-го года в популярной околокомпьютерной прессе было много шуму по поводу уникальной наномеханической разработки, выполненной исследователями из швейцарского подразделения корпорации IBM. Millipede (букв. многоножка) - так называлась чудо-машинка, уместившаяся на кремниевом кристалле площадью в несколько квадратных миллиметров. Главное её свойство - умение хранить невообразимые для своих крохотных габаритов объёмы информации: теоретически, Millipede позволял сохранить на квадратном дюйме особого пластика до одного терабита данных! Устройство и принцип действия революционной разработки IBM здорово напоминают те, что широко использовались в вычислительной технике в 70-е годы прошлого века (перфокарты). В настоящих перфокартах (листах картона) пробивались отверстия, кодировавшие небольшой - сотни байт - объём информации. "Модернизированный вариант" отличается прежде всего масштабами: "отверстия" в "перфокарте" Millipede измеряются единицами нанометров в диаметре. Впрочем, отверстия на самом деле - лишь углубления в пластике, а "компостером" служит миниатюрная матрица из тысячи с небольшим тончайших иголок. Недостатком же является низкая скорость чтения/записи, составлявшая лишь несколько килобит в секунду.

 
 
 
 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 
  1. 1.Информатика: Учебник. - 3-е перераб. изд. / Под ред. Н.В. Макаровой. - М.: Финансы и статистика, 2002. - 768 с.: ил.
  2. 2.Волк В.К. Исследование функциональной структуры памяти персонального компьютера. Лабораторный практикум. Учебное пособие. Издательство Курганского государственного университета, 2004 г.

Информация о работе Виды носителей информации. Хранение информации