Автор работы: Пользователь скрыл имя, 13 Ноября 2011 в 10:17, курсовая работа
Компьютер обменивается информацией с внешним миром с помощью периферийных устройств. Только благодаря периферийным устройствам человек может взаимодействовать с компьютером, а также со всеми подключенными к нему устройствами. Любое подключенное периферийное устройство в каждый момент времени может быть или занято выполнением порученной ему работы или пребывать в ожидании нового задания. Влияние скорости работы периферийных устройств на эффективность работы с компьютером не меньше, чем скорость работы его центрального процессора. Скорость работы внешних устройств от быстродействия процессора не зависит. Наиболее распространенные периферийные устройства приведены на рисунке:
Устройства вывода;
Мониторы:
2.1.ЭЛТ;
2.2. ЖК;
2.3.Плазменный;
2.4.Проекционный телевизор;
2.5.OLED-монитор;
2.6.Виртуальный ретинальный монитор;
2.7.Лазерный монитор.
3.Принтеры:
3.1.Матричные (игольчатые) принтеры
3.2.Струйные принтеры
3.3.Методы подачи чернил:
wЛазерные принтеры
wТермические принтеры
wПлоттер (графопостроитель)
4.Манипулятор «мышь»
4.1.Оптические мыши первого поколения;
4.2.Оптические светодиодные мыши;
4.3.Мышь с двойным датчиком;
4.4.Оптические лазерные мыши;
4.5.Индукционные мыши;
4.6.Гироскопические мыши;
4.7.Сенсорное управление;
4.8.Другие элементы управления;
4.9.Беспроводные мыши.
5. Проектор
5.1.Виды проекционных приборов
5.2.Аналоговые проекторы телевизионного сигнала
6. Оптический привод
7. Наушники
а) Классификация наушников.
8. Заключение.
9. Список литературы.
Занимающиеся этими
Помимо
этого, поскольку изгибающийся пластик
может быть использован в качестве
основы для матрицы, то контуры OLED-мониторов
не будут иметь никаких
материалы, то OLED-мониторы могут быть значительно тоньше современных сверхтонких жидкокристаллических мониторов.
Виртуальный ретинальный монитор
Виртуальный ретинальный монитор (Virtual retinal display, VRD; retinal scan display, RSD) — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза. В результате пользователь видит изображение, «висящее» в воздухе перед ним.
В предшественниках VRD изображение формировалось непосредственно перед глазом пользователя на маленьком «экране», обычно в виде больших очков. Неудобство этих систем было связано с малым углом обзора, большим весом устройств, необходимостью фокусировки глаза на определенной «глубине» и низкой яркостью.
Технология VRD стала возможной благодаря нескольким разработкам. В частности, это появление LED-систем высокой яркости, позволившие видеть изображение при дневном свете, и появление адаптивной оптики.
Первые образцы VRD были созданы в Университете Вашингтона (Лаборатория технологий интерфейса пользователя) в 1991 году. Большая часть подобных разработок было связано с системами виртуальной реальности.
Позже возник интерес к VRD как к устройству вывода для портативных устройств. Рассматривался такой вариант использования: пользователь помещает устройство перед собой, система обнаруживает глаз и проецирует на него изображение, используя методы компенсации движения. В таком виде небольшое VRD-устройство могло бы заменить полноразмерный монитор.
Кроме указанных выше преимуществ, VRD, проецирующая изображение на один глаз, позволяет видеть одновременно компьютерное изображение и реальный объект, что может применяться для создания иллюзии «рентгеновского зрения» — отображения внутренних частей устройств и органов (при ремонте автомобиля, хирургии).
VRD,
проецирующая изображение на
оба глаза, позволяет
Система,
примененная в мобильном
Считается, что VRD с использованием лазера и LED-элементов безопасны для человеческого глаза, поскольку они имеют низкую интенсивность, луч достаточно широк и не направлен на одну точку долгое время.
Лазерный
монитор
Лазерный телевизор — телевизор, созданный на основе технологии цветных лазеров.
Телевизор создан с применением технологии цветных лазеров. Такие телевизоры при малых габаритах отличаются высоким качеством изображения, превосходящим существующие плазменные и жидкокристаллические панели, а срок службы лазеров практически неограничен.
Лазерный телевизор от Mitsubishi базируется на технологии цифровой обработки света (digital light processing), разработанной компанией Texas Instruments. Устройство использует красные, зеленые и голубые лазеры для вывода изображения на экран.
В
продаваемых ныне моделях проекционных
телевизоров применяются
В
итоге, за счет чистых основных цветов,
удается расширить цветовой диапазон
в 1,8 раза по сравнению с классическими
телевизорами тыловой проекции. Напомним,
что стандарт xvYCC (Extended
Video YCC), предложенный в рамках технологии X.v.Colour компание
Лазерные
телевизоры способны поддерживать высокую
действительную частоту обновления
изображения экрана – от 120 герц,
благодаря чему в комплекте с затворными
стереоочками способны воспроизводить стереоизображен
Стоит
отметить, что сама по себе идея использования
лазеров в производстве телепри
неограничен, то есть владельцу телевизора не придется их со временем заменять, пиксели лазерных дисплеев не подвержены деградации или выгоранию.
Лазерный
телевизор имеет очень
Принтеры
Принтер (или печатающее устройство) предназначен для вывода информации на бумагу. Все принтеры могут выводить также рисунки и графики, цветные или черно-белые изображения. Существует несколько тысяч моделей принтеров, которые могут использоваться с IBM PC. Рассмотрим основные типы.
Матричные (игольчатые) принтеры
Игольчатый
принтер (Dot-matrix-Printer, он же матричный) долгое
время являлся стандартным
печати. При выборе принтера вы всегда должны исходить из задач, которые будут перед ним поставлены. Если необходим принтер, который должен целый
день
без перерыва печатать различные
формуляры, или скорость печати важнее,
чем качество, то дешевле использовать
игольчатый принтер. Если вы хотите получать
на бумаге качественное изображение, то
используйте струйный или лазерный
принтер, однако при
этом естественно, себестоимость каждого листа существенно возрастет. Игольчатые принтеры имеют существенное преимущество – возможность печатать сразу несколько копий документа “под копирку”. А недостатком таких принтеров является, производимый ими при работе, шум. Принцип, которым игольчатый принтер печатает знаки на бумаге, очень прост. Игольчатый принтер формирует знаки несколькими иголками, расположенными в головке принтера. Механика подачи бумаги проста: бумага втягивается с помощью вала, а между бумагой и головкой принтера располагается красящая лента. При ударе иголки по этой ленте на бумаге остается закрашенный след. Иголки, расположенные внутри головки, обычно активизируются электромагнитным методом. Головка двигается по горизонтальной направляющей и управляется шаговым двигателем. Существуют головки: 9*9 иголок, 9*18, 18*18, 24*37. Иголки расположены в один или два ряда. С помощью многоцветной красящей ленты реализована возможность цветной печати.
Струйные принтеры
Первой фирмой, изготовившей струйный принтер, является Hewlett Packard. Основной принцип работы струйных принтеров чем-то напоминает работу игольчатых принтеров, только вместо иголок здесь применяются сопла (очень маленькие отверстия), которые находятся в головке принтера. В этой головке установлен резервуар с жидкимичернилами, которые через сопла, как микрочастицы, переносятся на материал носителя. Число сопел зависят от модели принтера и изготовителя.
Методы подачи чернил:
-
головка принтера объединена
с резервуаром для чернил; замена
резервуара с чернилами
-
используется отдельный