Автор работы: Пользователь скрыл имя, 23 Февраля 2012 в 13:29, курсовая работа
Целью выполнения курсовой работы является закрепление знаний, полученных из ранее освоенных дисциплин и использование их при выполнении курсовой работы по выше указанной теме.
Задача курсовой работы заключается в том, чтобы указать и рассмотреть все изученные нами ранее типы и виды современных электронных носителей данных, а также провести анализ полученных данных.
1. Введение 2
2. Современные сменные носители данных и их виды. 3
3. Магнитные сменные носители данных 3
4. Лазерные (оптические) сменные носители данных 10
5. Электронные сменные носители данных 23
6. Заключение 27
7. Список используемой литературы 28
1. Введение
2. Современные сменные носители данных и их виды.
3. Магнитные сменные носители данных
4. Лазерные (оптические) сменные носители данных
5. Электронные сменные носители данных 23
6. Заключение
7. Список используемой литературы
Целью выполнения курсовой работы является закрепление знаний, полученных из ранее освоенных дисциплин и использование их при выполнении курсовой работы по выше указанной теме.
Задача курсовой работы заключается в том, чтобы указать и рассмотреть все изученные нами ранее типы и виды современных электронных носителей данных, а также провести анализ полученных данных.
При выполнении курсовой работы были использованы данные с различных Интернет-ресурсов, научных статей, учебной литературы.
Что такое сменный носитель данных?
Сменный носитель данных – это носитель для цифровой однократной или многократной записи электрическим способом, отличающийся малыми габаритами и высокой мобильностью. К современным сменным носителям относятся магнитные носители, лазерные (оптические), полупроводниковые.
Магнитные сменные носители
К магнитным носителям относится гибкий магнитный диск (ГМД) или дискета. Диске́та (англ. floppy disk) — портативный носитель информации, используемый для многократной записи и хранения данных, представляющий собой помещённый в защитный пластиковый корпус (диск диаметром 3½″ имеет более жёсткий футляр, чем диск диаметром 5¼″) гибкий магнитный диск, покрытый ферромагнитным слоем.
Рис. 1, Гибкий магнитный диск
В отечественных разработках существовала аббревиатура — ГМД, соответствующая термину «гибкий магнитный диск».
Устройство для работы с ГМД (дисковод гибких дисков, флоппи-дисковод), соответственно, называется НГМД — «накопитель на гибких магнитных дисках», а контроллеру такого устройства устройства соответствует аббревиатура КНГМД.
Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.
Промежуточным вариантом между ними и традиционным дискетами являются более современные НГМД и НЖМД использующие картриджи — Iomega Zip, Iomega Jaz; а также магнитооптические носители (МО) LS-120 и другие, в которых комбинировался лазер (используемый для разогрева участка поверхности диска) и магнитная головка (для записи и считывания информации с поверхности диска).
Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.
Одной из главных проблем, связанных с использованием дискет, была их
недолговечность. Наиболее уязвимым элементом конструкции дискеты был
жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могли отгибаться, что приводило к застреванию дискеты в дисководе, возвращавшая кожух в исходное положение пружина могла смещаться, в результате кожух дискеты отделялся от корпуса и больше не возвращался в исходное положение. Сам пластиковый корпус дискеты не служил достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводили магнитный носитель из строя. В щели между корпусом дискеты и кожухом могла проникать пыль. А сам гибкий диск мог относительно легко размагнититься от воздействия металлических намагниченных поверхностей, природных магнитов, электромагнитных полей вблизи высокочастотных приборов, что делало хранение информации на дискетах крайне ненадежным.
Рис.2, Картридж Verbatim MF 2 HD
В настоящее время использование дискет практически прекращено. С 2010 года выпускается большое количество материнских плат для настольных персональных компьютеров, которые вообще не содержат разъёма для подключения дисковода. Из ноутбуков встроенные дисководы полностью исчезли ещё несколькими годами ранее.
Электронные ключи при работе с системами «Банк-клиент», обеспечивающие электронную цифровую подпись документа, ранее распространявшиеся на дискетах, всё чаще выпускаются в виде флешки с функцией биометрической защиты.
При установке драйверов для оборудования (например, RAID-массива) во время установки современных ОС семейства MS Windows (Windows Vista, Windows Server 2008 R2, Windows 7) также может применяться флеш-накопитель.
В случае отсутствия дисководов, подключаемых в соответствующий «классический» интерфейсный разъём на материнской плате, можно воспользоваться внешним устройством, имеющим USB- или SCSI-интерфейс.
Картридж для стримера – это ленточный магнитный накопитель, для хранения большого объёма информации.
Рис.3, Картридж Hewlett-Packcard DAT 72
Современные стандарты
LTO (Linear Tape-Open) — стандарт записи на магнитную ленту, которому удовлетворяет большинство современных стримеров. Практически используемым форматом записи данных в этом стандарте является Ultrium.
Рис.4, Картридж Ultrium LTO-2
История
Технология LTO была разработана в 1998 году совместно тремя крупнейшими производителями накопителей на магнитной ленте — IBM, Hewlett-Packard и Seagate Technology. Позже ленточное подразделение Seagate Technology было приобретено компанией Quantum (англ.), занявшей таким образом одну из ведущих позиций в консорциуме LTO, и к консорциуму присоединился также ряд других фирм.
На основе технологии LTO первоначально были разработаны два формата — Ultrium и Accelis. Формат Ultrium, с которым работают все современные устройства LTO, оптимизировался под наиболее производительную запись данных (задачи резервного копирования). Формат Accelis изначально предназначался для оптимизации под наиболее производительное чтение (задачи доступа к большим объёмам информации в ленточных библиотеках), был реализован в системе IBM Magstar MP 3570, но на реальных задачах не смог показать преимуществ перед Ultrium, и его использование было прекращено.
Современное состояние
В современных устройствах (2010 год) используется технология Ultrium LTO пятого поколения (LTO-5). LTO-5 обеспечивает запись на одну кассету 1.5 Тбайт несжатых данных, что условно соответствует 3 Тбайт с применением аппаратного сжатия (в маркетинговых целях для поколений 1-5 предполагается средний коэффициент сжатия 2:1, для поколений 6-8 — 2.5:1).
Табл.1, Современное состояние
Картриджи
В стримерах LTO используются картриджи (кассеты) типа RW (англ. Read/Write — обычная лента для чтения и записи), типа WORM (англ. Write Once, Read Many — картриджи со специальной электронной схемой, допускающей только однократную запись и многократное чтение), а также чистящие картриджи (UCC, англ. Universal Cleaning Cartridge), совместимые со всеми устройствами, для проведения технического обслуживания стримера.
Цвета картриджей LTO Ultrium стандартизированы большинством производителей, чтобы легко визуально отличать различные поколения.
Табл.2, Цветовые стандарты картриджей
Технология IBM 3592
Компания IBM поставляет в настоящее время, помимо оборудования LTO, стримеры собственного закрытого стандарта IBM 3592 (Jaguar), представленные современной моделью IBM TS1140[4], а также совместимые ленточные библиотеки. Это оборудование используется в серверах и мейнфреймах. К линейке IBM 3592 относятся модели стримеров собственно 3592 (1 поколение), TS1120 (2 поколение), TS1130 (3 поколение) и TS1140, а также ленточные библиотеки на их основе. Картриджи имеют физическую ёмкость до 4 Тбайт.
Будучи, в отличие от стандарта LTO, ориентирован не только на архивацию и резервное копирование, но и на произвольный доступ к данным, стандарт IBM 3592 обеспечивает удовлетворение более жёстких требований по количеству перезаписей носителя. Также в IBM 3592 использован ряд решений для оптимизации производительности в старт-стопном режиме записи, такие как глубокое кеширование данных и многоскоростное движение ленты (6 или 7 скоростей, в зависимости от модели стримера).
Отличительной особенностью стандарта IBM 3592 является заложенная в него возможность переформатирования магнитных носителей старого поколения под формат более новых устройств с соответствующим повышением информационной ёмкости (в отличие от других современных стандартов, обеспечивающих совместимость новых устройств со старыми носителями только в старом формате). В общем случае предусматривается совместимость на 2 поколения вперёд, конкретные допустимые режимы использования конкретного носителя в конкретном устройстве определяются по таблице:
Табл.3, картриджы IBM 3592
Перспективы
В настоящее время компаниями IBM Research и FujiFilm представлена технология, позволяющая записывать до 35 терабайт данных на ленточном картридже, сопоставимом по размерам с LTO. Открытым, однако, пока остаётся вопрос об обеспечении достаточной пропускной способности интерфейса подключения устройства и блоков самого устройства: современным устройствам LTO-5, ориентированным на подключение по интерфейсу 6 Гбит/с SAS с фактической пропускной способностью 140 Мбайт/с, потребовалось бы около 3 суток для записи 35 терабайт данных
Лазерные (оптические) сменные носители данных
Компакт-диск (англ. Compact Disc, CD) — оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации которого осуществляется при помощи лазера.
Рис.5, Компакт-диск Verbatim
Изначально компакт-диск был создан для хранения аудиозаписей в цифровом виде (известен как CD-Audio), однако в дальнейшем стал широко использоваться как носитель для хранения любых данных (файлов) в двоичном виде (т. н. CD-ROM (англ. Compact Disc Read Only Memory, компакт-диск только с возможностью чтения), или КД-ПЗУ — «Компакт-диск, постоянное запоминающее устройство»). В дальнейшем появились компакт-диски не только с возможностью чтения однократно занесённой на них информации, но и с возможностью их записи и перезаписи (CD-R, CD-RW).
Компакт-диск был разработан в 1979 году компаниями Philips и Sony. На Philips разработали общий процесс производства, основываясь на своей более ранней технологии лазерных дисков. Sony, в свою очередь, использовала собственный метод кодирования сигнала PCM — Pulse Code Modulation, использовавшийся ранее в цифровых профессиональных магнитофонах. В 1982 году началось массовое производство компакт-дисков, на заводе в городе Лангенхагене под Ганновером, в Германии. Выпуск первого коммерческого музыкального CD был анонсирован 20 июня 1982 года. История гласит, что на нём был записан альбом «The Visitors» группы ABBA.[1]. Первым компакт диском, попавшим на прилавки музыкальных магазинов был альбом Билли Джоэла 1978 года под названием 52nd Street. Продажи этого альбома на CD начались в Японии 1 октября 1982 года.
По данным Philips, за 25 лет в мире было продано более 200 миллиардов CD. Несмотря на то, что всё больше людей предпочитают приобретать музыкальные файлы через интернет, по данным IFPI — продажи компакт-дисков до сих пор составляют около 70 % всех продаж музыки.
Значительный вклад в популяризацию компакт-дисков внесли Microsoft и Apple Computer. Джон Скалли, тогдашний CEO Apple Computer, в 1987 году сказал, что компакт-диски произведут революцию в мире персональных компьютеров. Один из первых массовых мультимедийных компьютеров/развлекательных центров, использующих CD диски, была Amiga CDTV (Commodore Dynamic Total Vision), позже CD диски стали использовать в игровых приставках Panasonic 3DO и Amiga CD32.
Формат файлов на CD-ROM отличается от формата записи аудио-компакт-дисков и потому обычный проигрыватель аудио-компакт-дисков не может воспроизвести хранимую на них информацию, для этого требуется специальный привод (устройство) для чтения таких дисков (сейчас имеются практически в каждом компьютере).
Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации (или 74 минуты звукозаписи). Согласно одной из легенд, разработчики рассчитывали объём так, чтобы на диске полностью поместилась девятая симфония Бетховена (самое популярное музыкальное произведение в Японии в 1979 году согласно специально проведённому опросу), длящаяся (в самом длинном из известных исполнений) именно 74 минуты. Однако, начиная приблизительно с 2000 года, всё большее распространение получали диски объёмом 700 Мбайт, которые позволяют записать 80 минут аудио, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт (90 минут) и даже больше, однако они могут не читаться на некоторых приводах компакт-дисков. Бывают также синглы, диаметром 8.9 см (не путать с мини-дисками диаметром 8 см), на которые вмещается около 140 или 210 Мбайт данных или 21 минута аудио, и CD, формой напоминающие кредитные карточки (т. н. диски-визитки).
Увеличение ёмкости хранимой информации стало возможным благодаря полному использованию допусков на изготовление дисков. Так, например, расстояние между дорожками по стандарту ECMA-130 составляет 1,6 ± 0,1 микрометра, линейная скорость вращения диска 1,2 или 1,4 м/с ± 0,01 м/с при тактовой частоте 4,3218 Мбит/с. Ёмкость в 650 Мбайт соответствует скорости 1,41 м/с и расстоянию между дорожками равному 1,7 микрометра, а ёмкость в 800 Мбайт — скорости в 1,39 м/с и расстоянию между дорожками в 1,5 микрометра.
Табл.4, емкость компакт-дисков
Геометрия диска
Компакт-диск представляет собой поликарбонатную подложку толщиной 1,2 мм и диаметром 120 мм, покрытую тончайшим слоем металла (алюминий, золото, серебро и др.), защищенного слоем лака, на который обычно наносится графическое представление содержания диска. Принцип считывания через подложку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0,7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0,2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Вес диска без коробки составляет ~15,7 г. Вес диска в обычной джуэл-коробке («jewel», не «slim») равен ~74 г. Рис.6, Компакт-диск