Автор работы: Пользователь скрыл имя, 10 Ноября 2011 в 11:33, дипломная работа
С оптимизацией человек сталкивается постоянно в своей жизни, порой даже не замечая этого. Он выбирает, на каких станциях метро нам лучше пересесть в другой поезд, чтобы добраться до места назначения быстрее и с меньшим числом пересадок. Казалось бы, простая задача, с которой каждый справляется с большим или меньшим успехом. Но даже это простой пример показывает, как неоднозначен выбор. Приходиться проводить оптимизацию по двум критериям – время и количество пересадок. А если таких критериев не 2, а несколько десятков, причём один критерий зависит от определённого количества других, то тут уже не так просто справиться с задачей, найти лучшее сочетание значений этих критериев. Не помогает даже большой опыт человека в области, в которой решается задача оптимизации.
ВВЕДЕНИЕ 3
1. ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ 7
1.1. История появления эволюционных алгоритмов 7
1.2. Общие сведения о ГА 9
1.3. Модели генетических алгоритмов 13
1.4. Другие пути решения задач оптимизации 17
1.5. Применение генетических алгоритмов 21
1.6. Постановка задачи 24
2. ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКИХ АЛГОРИТМОВ ДЛЯ ЗАДАЧ СОСТАВЛЕНИЯ УЧЕБНЫХ ПЛАНОВ 25
2.1. Учебные планы нового поколения. Общие сведения 25
2.2. Формирование рабочих учебных планов 27
2.3. Формирование учебных планов на основе генетических алгоритмов 31
2.4. Соответствие терминов биологии и предметной области 34
3. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ ГЕНЕТИЧЕСКОГО АЛГОРИТМА ДЛЯ ГЕНЕРАЦИИ УЧЕБНЫХ ПЛАНОВ 36
3.1. Выбор языка программирования. Pascal ABC 36
3.2. Функциональная схема работы программы 38
3.3. Описание fitness-функции 42
3.4. Генерация вариативных наборов 44
3.5. Описание констант и переменных программы 46
3.6. Описание функций программы 47
3.7. Результат работы программы 49
ЗАКЛЮЧЕНИЕ 51
Список используемой литературы 52