Процессоры AMD седьмого поколения (K7)

Автор работы: Пользователь скрыл имя, 10 Декабря 2012 в 09:43, реферат

Краткое описание

К7 - первый из семейства микропроцессоров х86 7-го поколения, в котором присутствуют конструктивные решения, до сих пор не применявшиеся в процессорах архитектуры х86 и сулящие выигрыш в быстродействии даже при одинаковых тактовых частотах. Наиболее впечатляющим из них является, конечно, 200-мегагерцовая системная шина, однако есть и другие, менее заметные на первый взгляд новшества, ставящие К7 выше процессоров 6-го поколения.

Содержание работы

Введение
1. Процессоры AMD седьмого поколения (K7)
2. Общие сведения о процессоре AMD Athlon (Thunderbird)
2.1 Основные свойства архитектуры процессора AMD Athlon™
2.2 Характеристики процессора AMD Athlon
3. Архитектура процессора AMD Athlon (Thunderbird)
3.1 Микроархитектура
3.2 Системная шина
3.3 Блок операций с плавающей точкой
3.4 Расширенные возможности технологии 3DNow!™
3.5 Архитектура КЭШа
3.6 DDR память
4. Возможности следующего поколения компьютеров
Список источников
Приложение

Содержимое работы - 1 файл

Процессоры AMD седьмого поколения.docx

— 48.45 Кб (Скачать файл)

 

2.1 Основные свойства  архитектуры процессора AMD Athlon™

 

 К основным свойствам архитектуры  процессора AMD Athlon™ относятся:

 

 Первая, оптимизированная для  работы с высокой тактовой  частотой, суперконвейерная, суперскалярная микроархитектура, предназначенная для выполнения 9 инструкций за один такт. Включает в себя:

 

Несколько параллельных декодеров x86-инструкций;

 

 Три суперскалярных внеочередных конвейера для выполнения вычислений с плавающей точкой, включая инструкции MMX™ и 3DNow!™;

 

 Три суперскалярных внеочередных конвейера для целочисленных вычислений;

 

 Три суперскалярных внеочередных конвейера для генерации адресов;

 

 Контроль за 72 инструкциями;

 

 Усовершенствованное динамическое  предсказание ветвлений;

 

 Расширение возможностей технологии 3DNow! для достижения высокой производительности.

 

21, уже применяющаяся инструкция  технологии 3DNow!, первой технологии  расширяющей возможности суперскалярной обработки SIMD;

 

19 новых инструкций улучшающих  расчеты с целочисленными данными,  необходимыми для кодирования  голоса и видео и интенсификации  обмена данными, как для Internet-приложений, так и для любых других приложений  требующих потока данных;

 

5 новых DSP-инструкций для программных  модемов, ADSL, Dolby Digital, и приложений использующих MP3;

 

Совместимость с Windows 98, Windows ME, Windows NT 4.x и Windows 2000 без какой-либо коррекции программного обеспечения. 266-МГц (а в будущем и 400-МГц) системная шина AMD Athlon, обеспечивает небывалую полосу пропускания для приложений требующих интенсивного обмена данными.

 

Технология синхронизации исходящих  данных;

 

8-разрядная коррекция (ECC) для  контроля целостности пересылаемых  данных;

 

Максимальное значение ширины полосы пропускания от 1,6 до 3,2 Гб/с;

 

Поддержка многопроцессорной обработки - топология точка-точка, с числом процессоров в многопроцессорных системах определяемым вариантом реализации чипсета;

 

Поддержка 24 отложенных транзакций на процессор.

 

 Процессор AMD Athlon имеет полноскоростной кэш первого уровня включающий в себя 64 Кбайт кэш инструкций и 64 Кбайт кэш данных, дающих в сумме 128 Кбайт. Интегрированный на кристалл полноскоростной кэш второго уровня имеет объем 256 Кбайт. Таким образом суммарный объем полноскоростного кэша составляет 384 Кбайт.

 

 Кристалл процессора содержит  приблизительно 37 млн. транзисторов  на площади 120 мм2.

 

 Изготавливается по современной  0.18 микронной технологии компании AMD с применением медных проводников  на заводе Fab 30 (г. Дрезден, Германия).

 

 

2.2 Характеристики процессора AMD Athlon

 

 

Чип, производимый по технологии 0.25 мкм

 

Ядро нового поколения с кодовым  именем Argon, содержащее 22 млн. транзисторов

 

Работает в специальных материнских  платах с процессорным разъемом Slot A

 

Использует высокопроизводительную системную шину Alpha EV6, лицензированную у DEC

 

Кеш первого уровня 128 Кбайт - по 64 Кбайта на код и на данные

 

Кеш второго уровня 512 Кбайт. Расположен вне процессорного ядра, но в процессорном картридже. Работает на половинной частоте ядра

 

Напряжение питания - 1.6В

 

Набор SIMD-инструкций 3DNow!, расширенный  дополнительными командами. Всего 45 команд.

Выпускаются версии с частотами 500, 550, 600 , 650 и 700МГц.

 

3. Архитектура процессора AMD Athlon (Thunderbird)

 

 

 Процессор седьмого поколения  AMD Athlon (Thunderbird) использует, на данный момент наиболее совершенную микроархитектуру x86. Сочетание указанных ниже свойств предоставляет тем, кто работает с системами на базе AMD Athlon (Thunderbird) не только высокую вычислительную мощь, но и дает уверенность в том, что архитектура их системы не устареет, по крайней мере, в ближайшее время.

 

 

3.1 Микроархитектура

 

 

 Как и процессоры от Intel с ядром, унаследованным от Pentium Pro, процессоры Athlon имеют внутреннюю RISC-архитектуру. Это означает, что все CISC-команды, обрабатываемые процессором, сначала раскладываются на простые RISC-операции, а потом только начинают обрабатываться в вычислительных устройствах CPU. Казалось бы, зачем усложнять себе жизнь? Оказывается, есть зачем. Сравнительно простые RISC-инструкции могут выполняться процессором по несколько штук одновременно и намного облегчают предсказание переходов, тем самым позволяя наращивать производительность за счет большего параллелизма.

 

 Говоря более просто, тот  производитель, который сделает  более "параллельный" процессор,  имеет шанс добиться превосходства  в производительности гораздо  меньшими усилиями. AMD при проектировании  Athlon, по-видимому, руководствовалась и этим принципом. Однако перед тем, как начать работу над параллельными потоками инструкций, процессор должен их откуда-то получить.

 

 Для этого в AMD Athlon, как впрочем и в Intel Pentium III, применяется дешифратор команд (декодер), который преобразует поступающий на вход процессора код.

 Дешифратор в AMD Athlon может раскладывать на RISC-составляющие до трех входящих CISC-команд одновременно.

 Структура поцессора AMD Athlon (Thunderbird)

 

 Современные интеловские процессоры  могут также обрабатывать до  трех команд, однако если для  Athlon совершенно все равно, какие команды он расщепляет, Pentium III хочет, чтобы две из трех инструкций были простыми и только одна - сложной. Это приводит к тому, что если Athlon за каждый процессорный такт может переварить три инструкции независимо ни от чего, то у Pentium III отдельные части дешифратора могут простаивать из-за неоптимизированного кода.

 

 Кристалл процессора AMD Athlon (ThunderBird)

 

 Перед тем, как попасть  в соответствующий вычислительный  блок, поступающий поток RISC-команд  задерживается в небольшом буфере (Instruction Control Unit), который, что уже неудивительно, у AMD Athlon расчитан на 72 инструкции против 20 у Pentium III. Увеличивая этот буфер, AMD попыталась добиться того, чтобы дешифратор команд не простаивал из-за переполнения Instruction Control Unit.

 

Еще один момент, заслуживающий внимания - вчетверо большая, чем у Pentium III, таблица предсказания переходов размером 2048 ячеек, в которой сохраняются предыдущие результаты выполнения логических операций. На основании этих данных процессор прогнозирует их результаты при их повторном выполнении. Благодаря этой технике AMD Athlon правильно предсказывает результаты ветвлений где-то в 95% случаев, что очень даже неплохо, если учесть, что аналогичная характеристика у Intel Pentium III всего 90%.

 

Процессор AMD Athlon (Thunderbird) представляет собой суперконвейерную, суперскалярную и оптимизированную для работы на высоких тактовых частотах микроархитектуру, способную выполнять девять инструкций за один такт. Соответственно, AMD Athlon™ оснащен девятью конвейерами: три из них - для вычислений адреса, три для целочисленных операций и три для выполнения x87-команд (операции с плавающей точкой), а так же инструкций из наборов 3DNow!™ и MMX™.

 

 

3.2 Системная шина

 

 

Прежде чем углубляться в  сам процессор, посмотрим, чем же отличается системная шина EV6, примененная AMD, от привычной интеловской GTL+. Внешнее сходство бывает обманчиво. Хотя процессорный разъем Slot A на системных платах для процессора AMD Athlon выглядит также как и Slot 1, перевернутый на 180 градусов, шинные протоколы и назначения контактов у Intel Pentium III и AMD Athlon совершенно различны. Более того, различно даже число задействованных сигналов - Athlon использует примерно половину из 242 контактов, в то время как Pentium III всего четверть. Внешняя похожесть вызвана тем, что AMD просто хотела облегчить жизнь производителям системных плат, которым не придется покупать особенные разъемы для установки на Slot A системные платы. Только и всего.

 

На самом же деле, хоть EV6 и работает на частоте 100 МГц, передача данных по ней, в отличие от GTL+ ведется на обоих  фронтах сигнала, потому фактическая  частота передачи данных составляет 200 МГц. Если учесть тот факт, что ширина шины EV6 - 72 бита, 8 из которых используется под ECC (контрольную сумму), то получаем скорость передачи данных 64бита х 200 МГц = 1,6 Гбайт/с. Напомню, что пропускная способность GTL+, работающей на 100 МГц в два раза меньше - 800 Мбайт/с. Повышение частоты GTL+ до 133 МГц дает увеличение пропускной способности при этом только до 1,06 Гбайт/с. Казалось бы, как в случае с GTL+, так и с EV6 получаются внушительные значения пропускной способности. Однако, только современная PC100 память может отожрать от нее до 800 Мбайт/с, а AGP, работающий в режиме 2x - до 528 Мбайт/с. Не говоря уже о PCI и всякой другой мелочевке. Получается, что GTL+ уже сейчас может не справляться с передаваемыми объемами данных. У EV6 же в этом случае все в порядке, потому эта шина более перспективна.

 

При этом, как частота GTL+ может быть увеличена со 100 до 133 МГц, планируется, что и частота EV6 также впоследствии достигнет значения 133 (266), а затем  и 200 (400) МГц. Однако планы эти могут  и не осуществиться - реализовать  работу на материнской плате EV6, требующую  большего количества контактных дорожек, несколько сложнее, особенно на больших  частотах. Хотя если у AMD все получится, пропускная способность системной  шины может достичь 2.1 и 3.2 Гбайта/с соответственно, что позволит беспрепятственно применять в Athlon-системах, например, высокопроизводительную 266-мегагерцовую DDR SDRAM.

 

Еще одна интересная особенность EV6 заключается  в поддержке многопроцессорных  систем, на рынок которых AMD планирует  выйти в наступающем году. В  отличие от GTL+, EV6 обеспечивает соединение точка-точка между процессорами и чипсетом, что позволяет выделить всю пропускную способность шины для каждого процессора. Теоретически таким образом может подключаться до 14 процессоров. Ограничения же на количество процессоров в интеловских системах обусловлено, в частности, и тем фактом, что общая пропускная способность GTL+ делится поровну между CPU. Потому, EV6 кажется перспективной и при использовании в многопроцессорных системах.

 

 

Сравнение шины EV6 (AMD) c GTL+ (Intel)

 

EV6 GTL+

 

 

 Системная шина процессора AMD Athlon (Thunderbird) - первая 266-MHz системная шина для x86-платформ. Системная шина процессора AMD Athlon (Thunderbird) разработана по предложенной компанией DEC, масштабируемой и предполагающей многопроцессорную обработку данных, технологии Alpha™ EV6, что обещает беспрецедентную производительность оснащенных этой шиной систем. Шина AMD Athlon построена на принципе "точка-точка", что так же способствует значительному росту производительности как для однопроцессорных, так и для много процессорных систем.

 

 

3.3 Блок операций с плавающей  точкой

 

 

 Athlon (Thunderbird) содержит 3 узла вычислений с плавающей точкой (fpu), любой из которых способен принимать на вход инструкции каждый такт работы процессора. При этом один узел предназначен исключительно для выполнения команды FSTORE! Назначение этого узла - обеспечивать обмен между регистрами и памятью в то время, как процессор выполняет другие инструкции. Такой подход, хотя и не повышает пиковую производительность, позволяет достичь более высокой средней производительности, что во многих случаях важнее. Остальные два fpu состоят из блока сложения (adder) и блока умножения (multiplier). Оба блока используют конвейеры (fully pipelined). Архитектура каждого fpu такова, что он может принимать на вход каждый такт одну инструкцию сложения и одну умножения, что дает пиковую производительность 1000MFLOPS при 500МГц. Ближайшим аналогом с точки зрения архитектуры является Pentium II, у которого также присутствуют adder и multiplier. Однако существуют два основных отличия. Во-первых, у PII только adder является полностью конвейеризованным (fully pipelined), multiplier же может принимать инструкцию на вход только каждый второй такт. Во-вторых, каждый узел fpu PII может принимать только одну инструкцию за такт, таким образом, пиковая производительность составляет 500MFLOPS при 500МГц. В результате возможности для вычислений с плавающей точкой у Athlon (Thunderbird) процессора выросли настолько, что ставят его в один ряд с RISC-процессорами, которыми оснащают мощные рабочие станции и серверы.

 

 

3.4 Расширенные возможности технологии 3DNow!™

 

 

 Блока 3DNow! в AMD Athlon коснулись сильные изменения. Хотя его архитектура и осталась неизменной - два конвейера обрабатывают инструкции, работающие с 64-битными регистрами, в которых лежат пары вещественных чисел одинарной точности, в сам набор команд было добавлено 24 новинки. Новые операции должны не только позволить увеличить скорость обработки данных, но и позволить задействовать технологию 3DNow! в таких областях, как распознавание звука и видео, а также интернет :) Кроме этого, по аналогии с SSE были добавлены и инструкции для работы с данными, находящимися в кеше. Поддержка обновленного набора 3DNow! уже встроена в Windows 98 SE и в DirectX 6.2.

 

 Таким образом, в набор  3DNow! входит теперь 45 команд, против 71 инструкции в SSE от Intel. Причем, судя по всему, использование новых команд должно дать еще больший эффект от 3DNow! В доказательство этого факта AMD распространила дополнительный DLL для известного теста 3DMark 99 MAX, задействующий новые возможности процессора.

 

 Для того, чтобы усилить возможности процессоров AMD Athlon™ как в обработке трехмерной графики, так и в исполнении других мультимедийных задач, разработанный AMD пакет из 21 инструкции, улучшающий возможности набора команд x86 по использованию суперскалярной техники SIMD и известный как технология 3DNow!™, был значительно расширен. В 3DNow!™ было добавлено 24 новых инструкции - 19 для того, чтобы улучшить возможности процессора в целочисленных расчетах, в том числе и в технологии MMX и ускорения передачи данных для Internet-приложений использующих потоки данных, а так же 5 DSP-расширений для программных модемов, ADSL, Dolby Digital и приложений, использующих MP3.

 

 

 Технология Enhanced 3DNow!™ против SSE - сравнение наборов командИсполняемые функции Enhanced 3DNow! SSE Вывод

Выполнение SIMD-вычислений с плавающей  точкой (впервые предложено AMD) 21 (число инструкций в первоначальном варианте технологии 3DNow!) ~52 Сравнение функциональности: Обе технологии поддерживают 4 операции за такт и выполняют вплоть до 2.4 Gflops на частоте 600 MHz. Но инструкции 3DNow! проще для исполнения. SSE включает в себя намного больше инструкций, поскольку архитектура Intel's требует дублирования управляющих функций MMX, для чего необходимо исполнять две инструкции, управляющие операциями с плавающей точкой - одну для SIMD-операций и другую для скалярных операций.

MMX (целочисленные вычисления),сложение и перемещение данных 19 (Новые инструкции) 19 Сравнимое функциональное назначение: обе технологии имеют инструкции для работы с кэшем и потоковыми данными.

DSP-расширения для коммуникаций 5 (новые инструкции) 0 Оригинальная методика AMD: Компания AMD приспосабливает SIMD-операции для решения задач DSP - программных модемов, программной реализации ADSL, MP3 и Dolby Digital.

Информация о работе Процессоры AMD седьмого поколения (K7)