Поняття і призначення комп’ютерних мереж

Автор работы: Пользователь скрыл имя, 09 Мая 2013 в 12:55, курсовая работа

Краткое описание

Передача інформації між комп’ютерами відбувається за допомогою електричних сигналів, які бувають цифровими та аналоговими. У комп’ютері використовуються цифрові сигнали у двійковому вигляді, а під час передачі інформації по мережі – аналогові (хвильові). Частота аналогового сигналу – це кількість виникнень хвилі у задану одиницю часу. Аналогові сигнали також використовуються модеми, які двійковий ноль перетворюють у сигнал низької частоти, а одиницю – високої частоти.

Содержание работы

Вступ
Теоритична частина
1.Поняття і призначення комп’ютерних мереж
1.1.Процес передачі даних в комп’ютерній мережі
1.2.Апаратна реалізація передавання даних
1.3.Класифікація комп’ютерних мереж
2.Топології комп'ютерних мереж
2.1. Топологія «зірка»
2.2.Топологія «кільце»
2.3.Топологія «загальна шина»
3.Мережева архітектура
3.1. Семирівнева модель комп’ютерних мереж
3.2. Протоколи комп’ютерних мереж
Практична частина
Розділ 1
1.1Призначення локальних обчислювальних мереж.
1.2 Визначення локальної обчислювальної мережі
1.3.Місце та значення запропонованої теми у галузі компю’терних мереж.
Розділ 2
2.1.Аналіз та обгрунтування вибору топології мережі
Розділ 3
3.1. Конфігурація обчилювальної мережі
3.2 Вибір мережного обладнання
3.3 Фізичне розташування комп’ютерів та іншого обладнання
3.4. План структурованої кабельної системи
3.5. Захист інформації в мережі
Розділ 4
4.1.Мережне програмне забезпечення
4.2.Способи підключення до Інтернет
Розділ 5

Розділ 6
6.1.Можливості подальшого розвитку мережі
Розділ 7
7.1 Загальна вартість проекту мережі
Висновок
Список використаної літератури

Содержимое работы - 1 файл

KRSEti.doc

— 4.72 Мб (Скачать файл)

Як приклад ієрархічного підходу можна представити обчислювальну систему як безліч процесорних модулів, безліч модулів пам'яті і шинний модуль. Процесорний модуль можна в свою чергу представити як сукупність пристрою управління, арифметичного пристрою, пристрою вибірки команд і пристрою введення-висновку. Аналогічно арифметичний пристрій може бути розбите на суматори, що накопичують регістри і т.д.

В більшості випадків користувачу  чорного ящика немає необхідності знати детальний відгук виходу на вхідну дію. Наприклад, неважливо, коли точно зміниться вихідний сигнал у відповідь на зміну вхідного сигналу, до того як він буде використаний. Таким чином, модулі (тобто чорні ящики) можуть бути описані за допомогою допустимих відхилень, а не точних значень. Це приводить до стандартизованих модулів, і далі в свою чергу до можливості використовування багатьох ідентичних, раніше створених (тобто готових) модулів в тій же самій системі. До того ж такі стандартизовані модулі можна легко замінити на нові функціонально еквівалентні модулі, які дешевше і більш надійні.

Всі ці переваги функціональної модульної (тобто простота проектування, легкість розуміння і стандартні, взаємозамінні, широко поширені модулі) дали підстави для введення рівневої архітектури мереж передачі даних. Рівневу архітектуру можна розглядати як ієрархію вкладених модулів або чорних ящиків, як описано вище. На кожному заданому рівні ієрархії наступний нижчий рівень розглядається як один або декілька чорних ящиків з деяким певним функціональним описом, який використовується на цьому заданому вищому рівні.

Незвичайним в рівневій архітектурі мереж передачі даних  є те, що лінії зв'язку представляються  чорними ящиками на найнижчому рівні  ієрархії. Внаслідок цього чорні  ящики на кожному вищому рівні  є насправді розподіленими чорними  ящиками. Таким чином, чорний ящик кожного вищого рівня складається з безлічі простих модулів (звично поодинці на кожен комутаційний вузол або зовнішній пункт, що входить в систему) плюс один або декілька чорних ящиків нижчого рівня. Прості модулі з чорного ящика на заданому рівні називаються паритетними процесами або паритетними модулями.

У простому випадку чорний ящик складається з двох паритетних процесів, поодинці на кожний з двох вузлів, і чорного ящика, який знаходиться  на нижчому рівні і представляє  систему зв'язку, що сполучає ці два паритетні процеси. Кожен процес передає повідомлення паритетному процесу в іншому вузлі по нижньому рівню, тобто через чорний ящик, що представляє систему зв'язку. Чорний ящик цього нижнього рівня може складатися з двох паритетних процесів нижчого рівня, що належать різним вузлам і сполучених системою зв'язку — чорним ящиком ще нижчого рівня. Як приклад можна вказати ситуацію, коли два керівники держав не володіють спільною мовою. Кожен керівник може передавати повідомлення паритетному керівнику через свій транслятор (перекладач), який передає на мові, відомій паритетному транслятору, а той вже доставляє повідомлення на мові паритетного керівника держави.

Зазначимо, що у процесу  передачі інформації між двома паритетними  модулями рівня n, що належать різним вузлам, є два абсолютно різних аспекти. Перший з них — це протокол (або розподілений алгоритм), за допомогою якого паритетні модулі обмінюються повідомленнями для того, щоб забезпечити необхідне обслуговування для наступного більш верхнього рівня. Другий — це опис точного інтерфейсу між модулем рівня n деякого вузла і модулем рівня n — 1 того ж вузла; через цей інтерфейс відбувається фактичний обмін вказаними повідомленнями між рівнем n і чорним ящиком — системою зв'язку нижчого рівня. Перший з відмічених аспектів є важливішим (і цікавішим) для концептуального розуміння роботи рівневої архітектури, а другий має істотне значення при проектуванні і стандартизації системи. У попередньому прикладі спілкування керівників держав перший аспект пов'язаний з переговорами між керівниками держав, тоді як другий зв'язаний про тим, що кожен керівник держави повинен бути упевнений у тому, що транслятор дійсно може переводити повідомлення вірно.

 

3.2. Протоколи комп’ютерних  мереж

Basic Reference Model (базова еталонна модель) - модель мережевої архітектури, становляча методичну основу сучасних інформаційних систем. Розроблена в 1977–1984 рр. і закріплена стандартом Міжнародної організації стандартів (International Standards Organization – ISO). Визначає принципи взаємодії відкритих систем (Open Systems Interconnection – OSI). Цю модель скорочено називають також моделлю ISO/OSI. Будується у вигляді багаторівневої ієрархічної структури, що включає в загальному випадку сім рівнів взаємодії з чітко визначеним для кожного з них функціональним призначенням. Ці сім рівнів такі (у порядку розташування від до верху низу): рівень 1 -- фізичний (див. Physical layer); рівень 2 -- канальний (див. Data link layer); рівень 3 --мережевий (див. Network layer); рівень 4 -- транспортний (див. Transport layer); рівень 5 -- сеансовий, або рівень сесій (див. Session layer); рівень 6 -- рівень представлення (див. Presentation layer); рівень 7 -- прикладний (див. Application layer). Кожен рівень в цій ієрархії взаємодіє з сусідніми, причому нижчі рівні є помічниками верхніх, приймаючи на себе виконання можливо більшого числа допоміжних функцій. Модель ISO/OSI лежить в основі побудови більшості сучасних мереж, зокрема ISDN і Internet.

Physical layer (фізичний рівень) – перший (нижній) рівень семирівневої ієрархічної  структури організації області взаємодії відкритих систем моделі OSI (див. Basic Reference Model). Є повністю апаратно-орієнтованим, тобто забезпечує безпосередній взаємозв'язок з середовищем передачі. Призначений для реалізації таких функцій, як встановлення і управління фізичним каналом, реалізовуючи механічні, електричні, функціональні і процедурні аспекти взаємодії з фізичними засобами передачі даних. На фізичному рівні може виконуватися кодування і модуляція сигналу, що передається по каналу. Виконує передачу біт по комунікаційному каналу, забезпечуючи відмінність значень 1 і 0 як таких. Приймає і передає потік біт безвідносно його структури або значення.

Data Link Layer (канальний рівень) - другий рівень багаторівневої  ієрархічної структури організації  взаємодії відкритих систем моделі ISO/OSI (див. Basic Reference Model). Основними функціями канального рівня є формування кадрів, адресної інформації і управління потоком даних в окремих фізичних каналах. Другий рівень містить два підрівні: верхній - управління логічним каналом (Logical Link Control - LLC), який здійснює перевірку і забезпечення правильності передачі інформації по з'єднанню, і нижній - управління доступом до середовища передачі (Medium Access Control - MAC). На канальний рівень покладаються наступні функції: ініціалізація (обмін службовими пакетами між взаємодіючими станціями, підтверджуючими готовність до передачі даних); ідентифікація (обмін між взаємодіючими станціями службовою інформацією, підтверджуючою правильність з'єднання); синхронізація і сегментація; забезпечення прозорості з'єднання для розташованого вище рівня; управління потоком (забезпечення однакової швидкості передачі і прийому); контроль помилок і запит у разі потреби повторної передачі; обробка збійних ситуацій; завершення роботи каналу (розрив логічного з'єднання); управління каналом (контроль за станом каналу).

Network Layer (мережевий рівень) - третій рівень семирівневої  ієрархічної структури взаємодії  відкритих систем моделі OSI (див. Basic Reference Model). Мережевий рівень розташований  над канальним рівнем (data link layer) і відповідає за доставку інформації адресату. Дані, що пересилаються від відправника до одержувача, можуть досягати адресата по різних каналах (технологія комутації каналів), розділятися на частини (пакети), кожна з яких поступає адресату по різних маршрутах (технологія комутації пакетів). Основні функції мережевого рівня полягають в управлінні адресацією і маршрутизацією даних в мережі. Наприклад, організація передачі пакетів, адресованих різним мережам, по одному фізичному з'єднанню (мультиплексування) і управління потоком (прийом від вищого рівня і передача іншим вузлам).

Transport Layer (транспортний рівень) - четвертий рівень в ієрархічній  семирівневій еталонній моделі  взаємодії відкритих систем (див. Basic Reference Model). Є вищим з трьох рівнів моделі (канального, мережевого і транспортного), безпосередньо пов'язаних з передачею інформації від одного пристрою до іншого. Основне призначення транспортного рівня – забезпечення якісного сервісу і надійності передачі даних між двома взаємодіючими системами з використанням нижніх рівнів. Наприклад, приймаючи блок даних від верхнього рівня, транспортний рівень розділяє його на пакети, передає їх підлеглому (мережевому) рівню, а на приймальній стороні збирає пакети, що прибувають, в правильному порядку. Тут же відбувається виявлення і виправлення помилок. Транспортний рівень реалізує т.з. крізний процес, забезпечуючи транспортування даних від відправника до одержувача, що є відмітною ознакою протоколів верхніх рівнів.

Session Layer (сеансовий рівень) - п'ятий рівень в ієрархічній семирівневій еталонній моделі взаємодії відкритих систем OSI (див. Basic Reference Model), організуючий способи взаємодії прикладних процесів кореспондентів, що зв'язуються. Встановлення зв'язку, виконуване сеансовим рівнем, включає адресацію і аутентифікацію користувача (обробку імен, паролів і прав доступу). Встановивши зв'язок, сеансовий рівень управляє передачею інформації між прикладними процесами, поставляючи прикладним функціям користувача порції даних за допомогою транспортного рівня.

Presentation layer (рівень представлення)  – шостий (у порядку розташування  від до верху низу) рівень багаторівневої  ієрархічної структури еталонної  моделі відкритих систем OSI (див. Basic Reference Model). Представляє інформацію в потрібній формі, тобто вирішує задачі перетворення формату файлів і задачі мережевого інтерфейсу до периферійних пристроїв. На цьому рівні може також виконуватися шифрування даних в цілях забезпечення безпеки при передачі інформації через мережі або стиснення даних.

Application Layer (прикладний рівень рівень) - рівень 7 (верхній) багаторівневої  ієрархічної структури організації  взаємодії відкритих систем моделі OSI (див. Basic Reference Model). Прикладний рівень  є основним, ради якого організовані всі інші. На відміну від функцій нижніх рівнів, залежних від апаратної частини системи, функції прикладного рівня залежать від задач користувача і можуть бути найрізноманітнішими, оскільки реалізують інтерфейс між прикладним програмним забезпеченням і системою зв'язку.

 

 

Практична частина

Розділ 1

1.1Призначення локальних обчислювальних мереж.

На базі економічної  та високопродуктивної електронної  техніки у 80-х роках визначилась  нова тенденція розвитку інформаційно-обчислювальної техніки - створення локальних обчислювальних мереж LAN (Local Area Network) різноманітного призначення. Локальна обчислювальна мережа - це комунікаційна мережа, яка забезпечує в межах деякої обмеженої території взаємозв’язок для широкого кола програмних продуктів. Вона підтримує зв’язок між ЕОМ, терміналами, обладнанням, забезпечує сумісне використання ресурсів.

Спочатку локальні обчислювальні мережі створювалися для наукових цілей з метою сумісного використання загальних ресурсів. Це пояснювалось тим, що в багатьох випадках широко розповсюджені персональні комп’ютери не забезпечували створення та функціонування достатньо потужних автоматизованих інформаційних систем через недостатність власних ресурсів. Для таких автоматизованих інформаційних систем необхідно було застосовувати потужніші комп’ютери - сервери, які дозволяли б концентрувати мережні ресурси і були б розраховані на ефективну роботу в мережі для сумісного використання користувачами. Сьогодні найпоширенішими стають локальні обчислювальні мережі комерційного призначення.

1.2 Визначення локальної обчислювальної мережі.

Як випливає із назви, локальна комп’ютерна мережа є системою, яка охоплює відносно невеликі віддалі. Міжнародний комітет IEEE802 (Інститут інженерів по електроніці і електротехніці, США), що спеціалізується на стандартизації в галузі локальних комп’ютерних мереж, дає наступне визначення цим системам: “Локальні комп’ютерні мережі відрізняються від інших видів мереж тим, що вони звичайно обмежені невеликим географічним районом, таким, як група поруч розташованих будівель, і, в залежності від каналів зв’язку здійснюють передачу даних в діапазонах швидкостей від помірних до високих з низьким рівнем помилок...” Значення параметрів району, загальна протяжність, кількість вузлів, швидкість передачі і топологія локальної обчислювальної мережі можуть бути різними, але комітет IEEE802 обмежує використання в локальних мережах кабелів довжиною до кількох кілометрів, підтримки декількох сотень станцій різноманітної топології при швидкості передачі інформації порядку 1-2 і більше Мбіт/с”.

Локальні комп’ютерні  мережі - це системи розподіленої обробки  даних і, на відміну від глобальних та регіональних комп’ютерних мереж, охоплюють невеликі території (діаметром 5-10 км) всередині окремих контор, банків, бірж, вузів, установ, науково-дослідних організацій і т.д. При допомозі загального каналу зв’язку локальна мережа може об’єднувати від десятків до сотень абонентських вузлів, що включають персональні комп’ютери, зовнішні запам’ятовуючі пристрої, дисплеї, друкуючі і копіюючі пристрої, касові і банківські апарати, інтерфейсні схеми та інші. Локальні мережі можуть під’єднуватися до інших локальних і великих (регіональних або глобальних) мереж ЕОМ за допомогою спеціальних шлюзів, мостів і маршрутизаторів, які реалізуються на спеціалізованих пристроях або на персональних комп’ютерах з відповідним програмним забезпеченням.

Відносно невелика складність і вартість локальних обчислювальних мереж, основу яких складають персональні  комп’ютери, забезпечують широке використання їх в сферах автоматизації комерційної, банківської та інших видів діяльності, діловодства, технологічних і виробничих процесів, для створення розподілених управлінських, інформаційно-довідкових, контрольно-вимірювальних систем, систем промислових роботів і гнучких промислових виробництв. В більшості випадків успіх використання локальних мереж обумовлений їх доступністю масовому користувачу, з одного боку, і тими соціально-економічними наслідками, які вони вносять в різноманітні види людської діяльності з іншого. Якщо на початку своєї діяльності локальні мережі здійснювали обмін міжмашинною і міжпроцесорною інформацією, то на наступних стадіях свого розвитку вони дозволяють передавати, в доповненні до цього, текстову, цифрову, графічну і мовну інформацію. Завдяки цьому почали з’являтися центри машинної обробки ділової (документальної) інформації - наказів, звітів, відомостей, калькуляцій, рахунків, листів і т.д. Такі центри об’єднали певну кількість автоматизованих робочих місць і стали новим етапом на шляху створення в майбутньому безпаперових технологій для застосування в керівних, фінансових, облікових та інших підрозділах. Це дозволило відмовитись від громіздких, незручних і трудомістких карткових каталогів, конторських і бухгалтерських книг та іншого, замінивши їх компактними і зручними комп’ютерними носіями інформації - магнітними і оптичними дисками, магнітними стрічками і т.д. У разі необхідності можна легко отримати копію документа на паперовому носії.

Информация о работе Поняття і призначення комп’ютерних мереж