Основные принципы построения локальных сетей

Автор работы: Пользователь скрыл имя, 24 Января 2011 в 20:48, реферат

Краткое описание

Компьютерная сеть – это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

Содержание работы

Введение .................................................................................... 3
Что такое ЛВС? ....................................................................... 4
+ одноранговые сети ...................................................... 5
+ иерархические сети ..................................................... 5

Базовая модель OSI ............................................................... 6
Сетевые устройства и средства коммуникации .......... 10
+ витая пара ...................................................................... 10
+ коаксиальный кабель ................................................ 10
+ широкополосный коаксиальный кабель ............. 11
+ ethernet – кабель ........................................................ 11
+ cheapernet – кабель .................................................... 11
+ оптоволоконные линии ............................................ 12

Топологии вычислительной сети .................................... 12
+ топология типа звезда ............................................... 12
+ кольцевая топология ................................................. 14
+ шинная топология ...................................................... 15
+ древовидная структура ЛВС ..................................... 18

Типы построения сетей по методам передачи
информации ............................................................................. 19
+ локальная сеть token ring ........................................ 19
+ локальная сеть arknet ............................................... 19
+ локальная сеть ethernet ........................................... 20

Стандартные стеки коммуникационных
протоколов …………………………………………………... 21
+ Стек OSI ………………………………………………... 21
+ Стек TCP/IP …………………………………………….22
+ Стек IPX/SPX ………………………………………….. 24
+ Стек NetBIOS/SMB ……………………………………25

Сетевые операционные системы для локальных
сетей ........................................................................................... 26
Использованная литература ............................................... 28

Содержимое работы - 1 файл

Основные принципы построения локальных сетей.doc

— 771.00 Кб (Скачать файл)

               Сервер в иерархических  сетях – это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более). Компьютеры, с которых осуществляется доступ к информации на сервере, называются станциями или клиентами.

               ЛВС классифицируются по назначению:

  • Сети терминального обслуживания. В них включается ЭВМ и периферийное оборудование,  используемое в монопольном режиме компьютером, к которому оно подключается, или быть общесетевым ресурсом.
  • Сети, на базе которых построены системы управления производством и учрежденческой деятельности. Они объединяются группой стандартов МАР/ТОР. В МАР описываются стандарты, используемые в промышленности. ТОР описывают стандарты для сетей, применяемых в офисных сетях.
  • Сети, которые объединяют системы автоматизации, проектирования. Рабочие станции таких сетей обычно базируются на достаточно мощных персональных ЭВМ, например фирмы Sun Microsystems.
  • Сети, на базе которых построены распределенные вычислительные системы.

         Все ЛВС работают в одном стандарте принятом для компьютерных сетей - в стандарте Open Systems Interconnection (OSI). 
 

         Базовая модель OSI (Open System Interconnection) 

         Для того чтобы взаимодействовать, люди используют общий язык. Если они  не могут разговаривать друг с  другом непосредственно, они применяют соответствующие вспомогательные средства для передачи сообщений.

               Показанные выше стадии необходимы, когда сообщение  передается от отправителя к получателю.

               Для того чтобы привести в движение процесс передачи данных, использовали машины с одинаковым кодированием данных и связанные одна с другой. Для единого представления данных в линиях связи, по которым передается информация, сформирована Международная организация по стандартизации (англ. ISO - International Standards Organization).

               ISO предназначена  для разработки модели международного  коммуникационного протокола, в рамках которой можно разрабатывать международные стандарты. Для наглядного пояснения расчленим ее на семь уровней.

               Международных организация  по стандартизации (ISO) разработала базовую модель  взаимодействия открытых систем (англ. Open Systems Interconnection (OSI)). Эта модель является международным стандартом для передачи данных.

               Модель содержит семь отдельных уровней:

               Уровень 1физический - битовые протоколы передачи информации;

               Уровень 2канальный - формирование кадров, управление доступом к среде;

               Уровень 3сетевой - маршрутизация, управление потоками данных;

               Уровень 4транспортный - обеспечение взаимодействия удаленных процессов;

               Уровень 5сеансовый - поддержка диалога между удаленными процессами;

               Уровень 6представлении данных - интерпретация передаваемых данных;

               Уровень 7прикладной - пользовательское управление данными.

         Основная идея этой модели заключается в том, что  каждому уровню отводится конкретная роль в том числе и транспортной среде. Благодаря этому общая задача передачи данных расчленяется на отдельные легко обозримые задачи. Необходимые соглашения для связи одного  уровня с выше- и нижерасположенными называют протоколом.

               Так как пользователи нуждаются в эффективном управлении, система вычислительной сети представляется как комплексное строение, которое координирует взаимодействие задач пользователей.

               С учетом вышеизложенного  можно вывести следующую уровневую модель с административными функциями, выполняющимися в пользовательском прикладном уровне.

               Отдельные уровни базовой  модели проходят в направлении вниз от источника данных (от уровня 7 к  уровню 1) и в направлении вверх  от приемника данных (от уровня 1 к уровню 7). Пользовательские данные передаются в нижерасположенный уровень вместе со специфическим для уровня заголовком до тех пор, пока не будет достигнут последний уровень.

               На приемной стороне  поступающие данные анализируются  и, по мере надобности, передаются далее в вышерасположенный уровень, пока информация не будет передана в пользовательский прикладной уровень.

               Уровень 1. Физический.

         На физическом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физическая связь и неразрывная с ней эксплуатационная готовность являются основной функцией 1-го уровня. Стандарты физического уровня включают рекомендации V.24 МККТТ (CCITT), EIA RS232 и Х.21. Стандарт ISDN ( Integrated Services Digital Network) в будущем сыграет определяющую роль для функций передачи данных. В качестве среды передачи данных используют трехжильный медный провод (экранированная витая пара), коаксиальный кабель, оптоволоконный проводник и радиорелейную линию.

               Уровень 2. Канальный.

               Канальный уровень  формирует из данных, передаваемых 1-м уровнем, так называемые "кадры" последовательности кадров. На этом уровне осуществляются управление доступом к передающей среде, используемой несколькими ЭВМ, синхронизация, обнаружение и исправление ошибок.

               Уровень 3. Сетевой.

               Сетевой уровень  устанавливает связь в вычислительной сети между двумя абонентами. Соединение происходит благодаря функциям маршрутизации, которые требуют наличия сетевого адреса в пакете. Сетевой уровень должен также обеспечивать обработку ошибок, мультиплексирование, управление потоками данных. Самый известный стандарт, относящийся к этому уровню, - рекомендация Х.25 МККТТ (для сетей общего пользования с коммутацией пакетов).

               Уровень 4. Транспортный.

               Транспортный уровень  поддерживает непрерывную передачу данных между двумя взаимодействующими друг с другом пользовательскими  процессами. Качество транспортировки, безошибочность передачи, независимость вычислительных сетей, сервис транспортировки из конца в конец, минимизация затрат и адресация связи гарантируют непрерывную и безошибочную передачу данных.

               Уровень 5. Сеансовый.

               Сеансовый уровень  координирует прием, передачу и выдачу одного сеанса связи. Для координации  необходимы контроль рабочих параметров, управление потоками данных промежуточных накопителей и диалоговый контроль, гарантирующий передачу, имеющихся в распоряжении данных. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, подсчета платы за пользование ресурсами сети, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях.

         Уровень 6. Представления данных.

         Уровень представления  данных предназначен для интерпретации  данных; а также подготовки данных для пользовательского прикладного уровня. На этом уровне происходит преобразование данных из кадров, используемых для передачи данных в экранный формат или формат для печатающих устройств оконечной системы.

         Уровень 7. Прикладной.

         В прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское прикладное программное обеспечение.

         Для передачи информации по коммуникационным линиям данные преобразуются в цепочку следующих друг за другом битов (двоичное кодирование с помощью двух состояний:"0" и "1").

         Передаваемые алфавитно-цифровые знаки представляются с помощью битовых комбинаций. Битовые комбинации располагают в определенной кодовой таблице, содержащей 4-, 5-, 6-, 7- или 8-битовые коды.

         Количество представленных знаков в ходе зависит от количества битов, используемых в коде: код из четырех битов может представить максимум 16 значений, 5-битовый код - 32 значения, 6-битовый код - 64 значения, 7-битовый - 128 значений и 8-битовый код - 256 алфавитно-цифровых знаков.

               При передаче информации между одинаковыми вычислительными  системами и различающимися типами компьютеров применяют следующие коды:

         На международном  уровне передача символьной информации осуществляется с помощью 7-битового кодирования, позволяющего закодировать заглавные и строчные буквы английского алфавита, а также некоторые спецсимволы.

         Национальные и  специальные знаки с помощью 7-битово кода представить нельзя. Для представления национальных знаков применяют наиболее употребимый 8-битовый код.

         Для правильной и, следовательно, полной и безошибочной передачи данных необходимо придерживаться согласованных и установленных правил. Все они оговорены в протоколе передачи данных.

         Протокол передачи данных требует следующей информации:

         Синхронизация

         Под синхронизацией понимают механизм распознавания начала блока данных и его конца.

         Инициализация

         Под инициализацией понимают установление соединения между  взаимодействующими партнерами.

         Блокирование

         Под блокированием  понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опознавательные знаки начала блока и его конца).

               Адресация

               Адресация обеспечивает идентификацию различного используемого оборудования данных, которое обменивается друг с другом информацией во время взаимодействия.

               Обнаружение ошибок

               Под обнаружением ошибок понимают установку битов четности и, следовательно, вычисление контрольных битов.

               Нумерация блоков

               Текущая нумерация  блоков позволяет установить ошибочно передаваемую или потерявшуюся информацию.

               Управление потоком данных

               Управление потоком  данных служит для распределения  и синхронизации информационных потоков. Так, например, если не хватает места в буфере устройства данных или данные не достаточно быстро обрабатываются в периферийных устройствах (например, принтерах), сообщения и / или запросы накапливаются.

               Методы восстановления

               После прерывания процесса передачи данных используют методы восстановления, чтобы вернуться к определенному положению для повторной передачи информации.

               Разрешение доступа

               Распределение, контроль и управление ограничениями доступа  к данным вменяются в обязанность пункта разрешения доступа (например, "только передача" или "только прием" ). 

               Сетевые устройства и средства коммуникаций

          

         В качестве средств  коммуникации наиболее часто используются витая пара, коаксиальный кабель оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели:

Информация о работе Основные принципы построения локальных сетей