Основные параметры процессора

Автор работы: Пользователь скрыл имя, 03 Июня 2012 в 00:43, реферат

Краткое описание

Сегодня мир без компьютера — это немыслимое явление. А ведь мало кто задумывается об устройстве этих "существ". И уж точно никто не знает, насколько умными стали данные аппараты за последние 50 лет. Для многих людей искусственный интеллект и компьютер, который стоит на вашем столе, — это одно и тоже. Но как люди просвещенные, мы знаем, что до разума человека, или даже собаки любой, даже самой умной, машине еще далеко.

Содержание работы

Введение
1.Функциональное устройство ЭВМ различных поколений
2.Процессор в архитектуре Фон Неймана.
3. Устройство центрального процессора……………………….6
4.Основные параметры процессора.
Заключение
Список литературы

Содержимое работы - 1 файл

Основные параметры процессора.doc

— 185.00 Кб (Скачать файл)


 

Оглавление

 

 

Введение

1.Функциональное устройство ЭВМ различных поколений

2.Процессор в архитектуре Фон Неймана.

3. Устройство центрального процессора……………………….6

4.Основные параметры процессора.

Заключение

Список литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Сегодня мир без компьютера — это немыслимое явление. А ведь мало кто задумывается об устройстве этих "существ". И уж точно никто не знает, насколько умными стали данные аппараты за последние 50 лет. Для многих людей искусственный интеллект и компьютер, который стоит на вашем столе, — это одно и тоже. Но как люди просвещенные, мы знаем, что до разума человека, или даже собаки любой, даже самой умной, машине еще далеко. А ведь отличие все-таки есть: в мозге живых существ идет параллельная обработка видео, звука, вкуса, ощущений, и т. д., не говоря уже о такой элементарной вещи, как мыслительный процесс, который сопровождает многих от рождения и до самой смерти. Сегодня любой прорыв в информационных технологиях встречается как нечто особо выдающееся. Люди хотят создать себе младшего брата, который, если еще не думает, то хотя бы соображает быстрее их. Понятно, что никакими гигагерцами не измеришь уникум человеческого мозга, но никто и не измеряет, и мы проведем краткую экскурсию в недалекое прошлое и, конечно, в непонятное настоящее развития главной части компьютера, его мозга, его сердца — его центрального процессора. В данный момент эта тема очень актуальна, т.к. современные технологии развиваются стремительно, особенно процессоры. Цель моего реферата познакомиться с устройством центрального процессора, рассмотреть некоторые процессоры.

1.    Функциональное устройство ЭВМ различных поколений

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии. Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки данных, изобретённого Джоном фон Нейманом.Дж. фон Нейман придумал схему постройки компьютера в 1946 году. Машина фон Неймана, как и практически каждый современный ЭВМ общего назначения, состоит из четырех основных компонентов:

1)      арифметико-логическое устройство (АЛУ);

2)      блок управления;

3)      блок памяти;

4)      устройства ввода/вывода.

В связи с огромными успехами в миниатюризации электронных компонентов, в современных компьютерах АЛУ и УУ удалось конструктивно объединить в единый узел – микропроцессор. Вообще термин процессор почти повсеместно, за исключением детальной литературы, вытеснил упоминания о своих составляющих АЛУ и УУ. Если сам перечень функциональных блоков более чем за полвека практически не изменился, то способы их соединения и взаимодействия претерпели некоторое эволюционное развитие. Согласно классической фон-неймановской схеме, преобладавшей в 1-2 поколениях, центром архитектуры ЭВМ являлся процессор

 

Схема 1. Функциональное устройство ЭВМ 1-2 поколения

(жирными стрелками показаны управляющие воздействия, а тонкими – направления информационных потоков)

Из приведенной схемы отчетливо видно, что центром такой конструкции является процессор. Во-первых, он управляет всеми устройствами, а во-вторых, через него проходят все информационные потоки. Описанной системе по определению присущ принципиальный недостаток – процессор оказывается чрезмерно перегруженным. Полностью регулируя обмен между всеми устройствами, он часто вынужден пассивно ожидать окончания ввода с медленных (как правило, содержащих механические части) устройств, что существенно снижает эффективность работы всей системы в целом.

Возникшее противоречие между постоянно растущей производительностью процессора и относительно низкой скоростью обмена с внешними устройствами стало отчетливо заметно уже во время расцвета вычислительной техники второго поколения. Поэтому при проектировании следующего, третьего, поколения инженеры начали принимать специальные меры для "разгрузки" процессора и его освобождения от детального руководства вводом/выводом.

На схеме 2 приведена типичная схема ЕС ЭВМ – большой вычислительной машины коллективного пользования 3 поколения. На ней появляются новые устройства – каналы, которые руководят работой внешних устройств. Для всех медленных устройств (типа перфокарточных или алфавитно-цифрового печатающего устройства АЦПУ) предназначается отдельный мультиплексный канал, а для более быстродействующих устройств на магнитных лентах МЛ и магнитных дисках МД – несколько селекторных. По заданию центрального процессора каждый из каналов способен осуществлять операции обмена информацией, причем уже без дополнительного участия процессора.

Схема 2. Функциональное устройство ЕС ЭВМ, принадлежащей к 3 поколению

Описанным образом центральный процессор освобождается от постоянного руководства работой внешних устройств: он только «выдает задание» необходимому каналу, и последний берет на себя полный контроль за деталями обмена.

 

Переход к четвертому поколению ЭВМ не только сопровождался многократным повышением плотности монтажа в микросхемах, но и изменением общей стратегии применения вычислительной техники. На смену громоздким ЭВМ коллективного пользования пришли персональные компьютеры, предназначенные прежде всего для индивидуальной работы отдельных пользователей. Архитектура при этом продолжила свое развитие и совершенствование в направлении освобождении процессора от руководства процессами ввода/вывода. В результате современный ПК приобрел структуру, приведенную на схеме 3.

Схема 3. Функциональное устройство ПК 4 поколения

 

2.Процессор в архитектуре Фон Неймана.

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом. Д. фон Нейман придумал схему постройки компьютера в 1946 году.

Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

Этапы цикла выполнения:

  1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения;
  2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности;
  3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её;
  4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды;
  5. Снова выполняется п. 1.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм полезной работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды остановки или переключение в режим обработки аппаратного прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется генератором тактовых импульсов. Генератор тактовых импульсов – генерирует последовательность электрических импульсов, частота которых определяет тактовую частоту процессора, промежуток времени между соседними импульсами, определяет время одного такта или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик компьютера и во многом определяет скорость его работы, поскольку каждая операция выполняется за определенное количество тактов.

 

3. Устройство центрального процессора.

 

Центральный процессор (ЦП; CPU — англ. céntral prócessing únit, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера.На рис.1 показано устройство обычного компьютера. Центральный процессор — это мозг компьютера. Его задача — выполнять программы, находящиеся в основной памяти. Он вызывает команды из памяти, определяет их тип, а затем выполняет их одну за другой. Компоненты соединены шиной, представляющей собой набор параллельно связанных проводов, по которым передаются адреса, данные и сигналы управления. Шины могут быть внешними (связывающими процессор с памятью и устройствами ввода-вывода) и внутренними.

Рис.1 Схема устройства компьютера с одним центральным процессором и двумя устройствами ввода-вывода

 

В состав центрального процессора входят:

устройство управления (УУ);

арифметико-логическое устройство (АЛУ);

запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;

генератор тактовой частоты (ГТЧ).

 

Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.

Запоминающее устройство - это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.

Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.

4.Основные параметры процессора.

Производительность процессора является интегральной характеристикой , которая зависит от частоты процессора, его разрядности, а так же особенностей архитектуры (наличие кэш-памяти и др.). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, т.е. определения скорости выполнения процессором определенных операций в какой-либо программной среде.

 

К основным параметрам процессора относятся следующие параметры:

- Число вычислительных ядер;

- Разрядность регистров;

- Разрядность внешних шин данных и адреса;

-  Объём виртуальной адресуемой памяти;

- Максимальный объем адресуемой памяти;

- Кеш;

- Тактовые частота процессора;

- Напряжение питания;

- Количество транзисторов;

- Техпроцесс;

- Площадь кристалла;

- Максимально потребляемый ток;

- Максимально потребляемая мощность;

- Разъём;

- Корпус.

 

Количество ядер

В последние годы к данной характеристике начинает проявляться все больше внимания. На сегодняшний день уже нет возможности продолжать увеличивать тактовую частоту. Поэтому производителями процессоров был взят курс на улучшение параллельных вычислений и увеличение ядер в процессорах. Выражаясь простым языком, число ядер свидетельствует о том, какое количество программ может быть запущено одновременно, при этом на быстродействии компьютера это не сказывается. Однако если вами используется программа, рассчитанная на 2 ядра, а последних у вас не менее 3, то, чтобы вы не делали, но данное приложение не сможет использовать все возможности имеющихся у вас ядер. На сегодняшний день подавляющее число программ рассчитано на 1-2 ядра, в связи с этим, приобретя четырех-ядерный процессор, вы не сможете добиться существенного повышения производительности. Однако если вами осуществляется сборка компьютера, на котором вы планируете играть в самые последние игры и использовать для обработки видео, то предпочтительнее, чтобы это был процессор с максимальным числом ядер. Сейчас на рынке можно найти одно-, двух-, четырёх-, шести- и восьми- ядерные процессоры.

Разрядность микропроцессора

Информация внутри компьютера представлена в виде двоичных чисел, т.е. сочетаний логических единиц и нулей, называемых битами (1 бит- один двоичный разряд, 1 или 0). Между устройствами компьютера данные передаются не сплошным потоком, а порциями- машинными словами, одно машинное слово передаётся за один такт работы компьютера. Количество бит в машинном слове называется разрядностью. Чем больше разрядность, т.е. чем длиннее машинное слово, тем быстрее передаётся и обрабатывается информация, тем быстрее работает компьютер. Применительно к микропроцессору, различают три вида разрядности:

Информация о работе Основные параметры процессора