Автор работы: Пользователь скрыл имя, 16 Ноября 2011 в 18:01, реферат
В настоящем реферате мы рассмотрим основные современные виды оперативной памяти, применяемой в десктопных системах (оперативную память, применяемую в серверах и ноутбуках, оставим за его рамками). Под ними будем подразумевать память класса SDRAM — SDR (Single Data Rate — память с одинарной скоростью передачи данных), DDR (Double Data Rate — память с удвоенной скоростью передачи данных) и DDR2 (память DDR второго поколения).
Аббревиатура SDRAM расшифровывается как Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом.
Ширина модуля — это разрядность его интерфейса шины данных, которая соответствует разрядности шины данных контроллера памяти и для всех современных типов контроллеров памяти SDRAM (SDR, DDR и DDR2) составляет 64 бита. Таким образом, все современные модули характеризуются шириной интерфейса шины данных «x64». Каким же образом достигается соответствие между 64-битная шириной шины данных контроллера памяти (64-битным интерфейсом модуля памяти), когда типичная ширина внешней шины данных микросхем памяти обычно составляет всего 4, 8 или 16 бит? Ответ очень прост — интерфейс шины данных модуля составляется простым последовательным «слиянием» внешних шин данных индивидуальных микросхем модуля памяти. Такое «заполнение» шины данных контроллера памяти принято называть составлением физического банка памяти. Таким образом, для составления одного физического банка 64-разрядного модуля памяти SDRAM необходимо и достаточно наличие 16 микросхем x4, 8 микросхем x8 (это наиболее часто встречаемый вариант) или 4 микросхем x16.
Оставшийся параметр — глубина модуля, являющийся характеристикой емкости (вместимости) модуля памяти, выраженной в количестве «слов» определенной ширины, вычисляется, как нетрудно догадаться, простым делением полного объема модуля (выраженного в битах) на его ширину (разрядность внешней шины данных, также выраженную в битах). Так, типичный 512-МБ модуль памяти SDR/DDR/DDR2 SDRAM имеет глубину, равную 512МБайт * 8 (бит/байт) / 64 бита = 64М. Соответственно, произведение ширины на глубину дает полную емкость модуля и определяет его организацию, или геометрию, которая в данном примере записывается в виде «64Мx64».
Возвращаясь к физическим банкам модуля памяти, заметим, что при использовании достаточно «широких» микросхем x8 или x16 ничего не мешает поместить и большее их количество, соответствующее не одному, а двум физическим банкам — 16 микросхем x8 или 8 микросхем x16. Так различают однобанковые (или «одноранковые», single-rank) и двухбанковые («двухранковые», dual-rank) модули. Двухбанковые модули памяти наиболее часто представлены конфигурацией «16 микросхем x8», при этом один из физических банков (первые 8 микросхем) расположен с лицевой стороны модуля, а второй из них (оставшиеся 8 микросхем) — с тыльной. Наличие более одного физического банка в модуле памяти нельзя считать определенным преимуществом, т.к. может потребовать увеличения задержек командного интерфейса, которые рассмотрены в соответствующем разделе.
Еще до появления первого типа синхронной динамической оперативной памяти SDR SDRAM стандартом JEDEC предусматривается, что на каждом модуле памяти должна присутствовать небольшая специализированная микросхема ПЗУ, именуемая микросхемой «последовательного обнаружения присутствия» (Serial Presence Detect, SPD). Эта микросхема содержит основную информацию о типе и конфигурации модуля, временных задержках (таймингах, см. следующий раздел), которых необходимо придерживаться при выполнении той или иной операции на уровне микросхем памяти, а также прочую информацию, включающую в себя код производителя модуля, его серийный номер, дату изготовления и т.п. Последняя ревизия стандарта SPD модулей памяти DDR2 также включает в себя данные о температурном режиме функционирования модулей, которая может использоваться, например, для поддержания оптимального температурного режима посредством управления синхронизацией (регулированием скважности импульсов синхросигнала) памяти (так называемый «троттлинг памяти», DRAM Throttle). Более подробную информацию о микросхеме SPD и о том, как выглядит ее содержимое можно получить в нашей статье «SPD — схема последовательного детектирования», а также в серии наших исследований модулей оперативной памяти.
Немаловажной
категорией характеристик микросхем/
В этом разделе мы рассмотрим, где именно возникают задержки при операциях с данными — содержимым микросхем памяти, и как они связаны с важнейшими параметрами таймингов памяти. Поскольку в настоящем руководстве мы рассматриваем модули памяти класса SDRAM (SDR, DDR и DDR2), ниже мы рассмотрим конкретную схему доступа к данным, содержащимся в ячейках памяти микросхемы SDRAM. В этом разделе мы также рассмотрим несколько иную категорию таймингов, связанных не с доступом к данным, но с выбором номера физического банка для маршрутизации команд по командному интерфейсу модулей памяти класса SDRAM — так называемые «задержки командного интерфейса».
Перед осуществлением любой операции с данными, содержащимися в определенном банке микросхемы SDRAM (чтения — команда READ, или записи — команда WRITE), необходимо «активизировать» соответствующую строку в соответствующем банке. С этой целью, на микросхему подается команда активизации (ACTIVATE) вместе с номером банка (линии BA0-BA1 для 4-банковой микросхемы) и адресом строки (адресные линии A0-A12, реальное количество которых зависит от количества строк в банке, в рассматриваемом примере 512-Мбит микросхемы памяти SDRAM их число составляет 213 = 8192).
Активизированная строка остается открытой (доступной) для последующих операций доступа до поступления команды подзарядки банка (PRECHARGE), по сути, закрывающей данную строку. Минимальный период «активности» строки — от момента ее активации до момента поступления команды подзарядки, определяется минимальным временем активности строки (Row Active Time, tRAS).
Повторная активизация какой-либо другой строки того же банка не может быть осуществлена до тех пор, пока предыдущая строка этого банка остается открытой (т.к. усилитель уровня, содержащий буфер данных размером в одну строку банка и описанный в разделе «Микросхемы SDRAM: Физическая организация и принцип работы», является общим для всех строк данного банка микросхемы SDRAM). Таким образом, минимальный промежуток времени между активизацией двух различных строк одного и того же банка определяется минимальным временем цикла строки (Row Cycle Time, tRC).
В то же время, после активизации определенной строки определенного банка микросхеме SDRAM ничего не мешает активизировать какую-либо другую строку другого банка (в этом и заключается рассмотренное выше преимущество «многобанковой» структуры микросхем SDRAM) на следующем такте шины памяти. Тем не менее, в реальных условиях производителями устройств SDRAM обычно здесь также умышленно вводится дополнительная задержка, именуемая «задержкой от активации строки до активации строки» (Row-to-Row Delay, tRRD). Причины введения этой задержки не связаны с функционированием микросхем памяти как таковых и являются чисто электрическими — операция активизации строки потребляет весьма значительное количество электрического тока, в связи с чем частое их осуществление может приводить к нежелательным избыточным нагрузкам устройства по току.
Следующий временной параметр функционирования устройств памяти возникает в связи с тем, что активизация строки памяти сама по себе требует определенного времени. В связи с этим, последующие (после ACTIVATE) команды чтения (READ) или записи (WRITE) данных не могут быть поданы на следующем такте шины памяти, а лишь спустя определенный временной интервал, называемый «задержкой между подачей адреса строки и столбца» (RAS#-to-CAS# Delay, tRCD).
Итак, после прошествия интервала времени, равного tRCD, при чтении данных в микросхему памяти подается команда READ вместе с номером банка (предварительно активизированного командой ACTIVATE) и адресом столбца. Устройства памяти типа SDRAM ориентированы на чтение и запись данных в пакетном (Burst) режиме. Это означает, что подача всего одной команды READ (WRITE) приведет к считыванию из ячеек (записыванию в ячейки) не одного, а сразу нескольких подряд расположенных элементов, или «слов» данных (разрядность каждого из которых равна ширине внешней шины данных микросхемы — например, 8 бит). Количество элементов данных, считываемых одной командой READ или записываемых одной командой WRITE, называется «длиной пакета» (Burst Length) и обычно составляет 2, 4 или 8 элементов (за исключением экзотического случая передачи целой строки (страницы) — «Full-Page Burst», когда необходимо дополнительно использовать специальную команду BURST TERMINATE для прерывания сверхдлинной пакетной передачи данных). Заметим, что для микросхем памяти типа DDR и DDR2 параметр Burst Length не может принимать значение меньше 2 и 4 элементов, соответственно — причину этого мы рассмотрим ниже, в связи с обсуждением различий в реализации устройств памяти SDR/DDR/DDR2 SDRAM.
Возвращаясь
к чтению данных, заметим, что существует
две разновидности команды
После подачи команды READ, первая порция данных оказывается доступной не сразу, а с задержкой в несколько тактов шины памяти, в течение которой данные, считанные из усилителя уровня, синхронизируются и передаются на внешние выводы микросхемы. Задержка между подачей команды чтения и фактическим «появлением» данных на шине считается наиболее важной и именуется пресловутой «задержкой сигнала CAS#» (CAS# Latency, tCL). Последующие порции данных (в соответствии с длиной передаваемого пакета) оказываются доступными без каких-либо дополнительных задержек, на каждом последующем такте шины памяти (по 1 элементу за такт для устройств SDR, по 2 элемента в случае устройств DDR/DDR2).
Операции записи данных осуществляются аналогичным образом. Точно также существуют две разновидности команд записи — простая запись данных (WRITE) и запись с последующей автоматической подзарядкой строки (Write with Auto-Precharge, «WR+AP»). Точно также при подаче команды WRITE/WR+AP на микросхему памяти подаются номер банка и адрес столбца. Наконец, точно также запись данных осуществляется «пакетным» образом. Отличия операции записи от операции чтения следующие. Во-первых, первую порцию данных, подлежащих записи, необходимо подать по шине данных одновременно с подачей по адресной шине команды WRITE/WR+AP, номера банка и адреса столбца, а последующие порции, количество которых определяется длиной пакета — на каждом последующем такте шины памяти. Во-вторых, вместо «задержки сигнала CAS#» (tCL) важной здесь является иная характеристика, именуемая «периодом восстановления после записи» (Write Recovery Time, tWR). Эта величина определяет минимальный промежуток времени между приемом последней порции данных, подлежащих записи, и готовности строки памяти к ее закрытию с помощью команды PRECHARGE. Если вместо закрытия строки требуется последующее считывание данных из той же самой открытой строки, то приобретает важность другая задержка, именуемая «задержкой между операциями записи и чтения» (Write-to-Read Delay, tWTR).
Цикл чтения/записи данных в строки памяти, который в общем случае можно обозначить «циклом доступа к строке памяти», завершается закрытием открытой строки банка с помощью команды подзарядки строки — PRECHARGE (которая, как мы уже отмечали выше, может быть «автоматической», т.е. являться составной частью команд «RD+AP» или «WR+AP»). Последующий доступ к этому банку микросхемы становится возможным не сразу, а по прошествию интервала времени, называемого «временем подзарядки строки» (Row Precharge Time, tRP). За этот период времени осуществляется собственно операция «подзарядки», т.е. возвращения элементов данных, соответствующих всем столбцам данной строки с усилителя уровня обратно в ячейки строки памяти.
В
заключение этой части, посвященной
задержкам при доступе к
Временной
промежуток между первой и второй
операцией составляет «задержку
между RAS# и CAS#» (tRCD), между второй и
третьей — «задержку CAS#» (tCL). Промежуток
времени между третьей и
Важно заметить, что микросхемы SDRAM позволяют осуществлять третью и четвертую операции в некотором смысле «параллельно». Чтобы быть точным — команду подзарядки строки PRECHARGE можно подавать за некоторое количество тактов x до наступления того момента, на котором происходит выдача последнего элемента данных запрашиваемого пакета, не опасаясь при этом возникновения ситуации «обрыва» передаваемого пакета (последняя возникнет, если команду PRECHARGE подать после команды READ с временным промежутком, меньшим x). Не вдаваясь в подробности, отметим, что этот промежуток времени составляет величину, равную величине задержки сигнала CAS# за вычетом единицы (x = tCL - 1).
Наконец, промежуток времени между четвертой операцией и последующим повтором первой операции цикла составляет «время подзарядки строки» (tRP).
В то же время, минимальному времени активности строки (от подачи команды ACTIVATE до подачи команды PRECHARGE, tRAS), по его определению, как раз отвечает промежуток времени между началом первой и началом четвертой операции. Отсюда вытекает первое важное соотношение между таймингами памяти: