Автор работы: Пользователь скрыл имя, 15 Февраля 2013 в 17:17, реферат
Моделирование в настоящее время привлекает пристальное внимание и получило необычайно широкое применение во многих областях знаний: от философских и других гуманитарных разделов знаний до ядерной физики и других разделов физики, от проблем радиотехники и электротехники до проблем механики и гидромеханики, физиологии и биологии и т. д. Оно превратилось в общенаучный, в высшей степени эффективный инструмент познания; сследования моделей н
Введение
3-4
1.Определение понятий моделирования, модели, аналогии и подобия
1.1.Определение понятия модель (моделирование).
Классификация моделей и этапов моделирования
5-6
1.2.История развития моделирования
7-8
1.3.Аналогия и подобие, их соподчиненность
9-12
2.Типы моделей и процесс их построения
2.1.Типы моделей
13-14
2.2.Процесс построения модели
15-18
3.Необходимость моделирования
19-21
4.Общие проблемы моделирования
22-24
Заключение
25
Список используемой литературы
СОДЕРЖАНИЕ
Введение |
3-4 |
1.Определение понятий моделирования, модели, аналогии и подобия |
|
1.1.Определение понятия модель (моделирование). Классификация моделей и этапов моделирования |
5-6 |
1.2.История развития моделирования |
7-8 |
1.3.Аналогия и подобие, их соподчиненность |
9-12 |
2.Типы моделей и процесс их построения |
|
2.1.Типы моделей |
13-14 |
2.2.Процесс построения модели |
15-18 |
3.Необходимость моделирования |
19-21 |
4.Общие проблемы моделирования |
22-24 |
Заключение |
25 |
Список используемой литературы |
26 |
Введение
Моделирование в настоящее время привлекает пристальное внимание и получило необычайно широкое применение во многих областях знаний: от философских и других гуманитарных разделов знаний до ядерной физики и других разделов физики, от проблем радиотехники и электротехники до проблем механики и гидромеханики, физиологии и биологии и т. д. Оно превратилось в общенаучный, в высшей степени эффективный инструмент познания; в метод прогнозирования инженерно-конструкторских разработок; в метод машинной имитации долгосрочных программ и планов в области экономики, анализа и оценки различных вариантов принимаемых ответственных решений и последствий их реализации.
Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.
Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования "погружен" в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.
Для моделирования существенно объединение дифференциального (атомистического) и структурно-целостного подходов, диалектическое единство анализа и синтеза при исследовании изучаемых явлений. Моделирование заключается в имитации изучаемого явления. Точность имитации определяется путем сравнения полученного при воспроизведении результата с его прототипом, объектом исследования, и оценки степени их сходства.
Структура моего реферата включает общую характеристику термина “модель”, классификацию моделей. Так как аналогия является научной основой моделирования кратко, дается понятие этого термина и его отличия от модели. Показано историческое развитие моделирования. Дается сравнение модели и эксперимента, приводятся примеры моделирования в технике, моделирования общественно - исторических процессов и процессов развития природы и общества.
1. Определение понятий моделирования
1. 1. Определение понятия модель (моделирование).
Классификация моделей и этапов моделирования
Под моделью - понимается
такая мысленно представляемая или
материально реализованная
Таковыми признаками являются:
1) закон функционирования
и характерные особенности
2) основания для преобразования
свойств и отношений модели
в свойства и отношения оригина
Модели можно разделить:
В общем случае процесс моделирования состоит из следующих этапов:
1. Постановка задачи
и определение свойств
2. Констатация затруднительности
или невозможности
3. Выбор модели, достаточно хорошо фиксирующей существенные свойства оригинала и легко поддающейся исследованию.
4. Исследование модели в соответствии с поставленной задачей.
5. Перенос результатов исследования модели на оригинал.
6. Проверка этих результатов.
Основными задачами являются: во-первых, выбор моделей и, во-вторых, перенос результатов исследования моделей на оригинал.
1. 2. История развития моделирования
Исторически первыми моделями как заместителями некоторых объектов были, несомненно, символические условные модели. Ими являлись языковые знаки, естественно возникшие в ходе развития человечества и постепенно составившие разговорный язык.
Следующим этапом развития моделирования можно считать возникновение знаковых числовых обозначений. Сведения о результатах счета первоначально сохранился в виде зарубок. Постепенное совершенствование этого метода привело к изображению чисел в виде цифр как системы знаков. Можно предположить, что именно зарубки были прототипом римских цифр I, II, III, V, X.
Дальнейшее развитие
знаковых моделей связано с
Значительное развитие моделирование получает в древней Греции в V-III вв. до н. э. Была создана геометрическая модель Солнечной системы, врач Гиппократ для изучения человеческого глаза воспользовался его физической аналогичной моделью - глазом быка, математик Евклид создал учение о геометрическом подобии. По мере развития и укрупнения механического производства, металлургии, кораблестроения, градостроения и т. д., все чаще обнаруживается недостаточность геометрического подобия физически однородных объектов для прогнозирования свойств объектов больших размеров на основании свойств объектов меньших размеров.
Первый шаг в развитии учения о подобии при физическом моделировании был сделан И. Ньютоном (1643-1727), который сформулировал условия подобия механических явлений. Далее развитие длительное время шло путем определения частных условий подобия для явлений только определенной физической природы - работы И. П. Кулибина (1735-1818) и Л. Эйлера (1707-1783) в области строительной механики, В. Л. Кирпичева (1845-1913) в области упругости и др.
И наконец, в 1909-1914 гг. Н. Е. Жуковским, Д. Релеем, Ф. Букингемом была сформулирована теорема, позволяющая установить условия подобия явлений любой физической природы.
Параллельно шло развитие логического моделирования в знаковой форме, это прежде всего развитие математики. В конце XVI в. Д. Непер (1550-1617) изобрел логарифмы. В конце XVII в. И. Ньютон и Г. Лейбниц (1646-1716) создали дифференциальное исчисление. Получают развитие численные методы решения различных задач.
К первым вычислительным
устройствам можно отнести счеты (XV-XVI в.), логарифмическую
линейку (начало XVII в.). Длительное время
вычислительные устройства были исключительно
механическими - арифмометр, счетно - решающие
механизмы и т. п. И только в 30-х гг. нашего
столетия начинается развитие электрических
аналоговых и цифровых вычислительных
устройств. И первые обобщения двух направлений
материального моделирования: а) физического
и б) формального с помощью вычислительных
устройств были сделаны В. А. Вениковым
(1949 г. ) и Л. И. Гутенмахером (1949 г.), а затем
получили дальнейшее развитие у И. М. Тетельбаума
(1959 г.), А. М. Сучилина (1964 г.), П. М. Алабужева
(1968 г.). Философские концепции основных
общих вопросов моделирования отражены
В. А. Штоффом, И. Б. Новиковым, Н. А. Уемовым
и др.
1. 3.
Аналогия и подобие, их
Научной основой моделирования служит теория аналогии, в частном случае физического и аналогового моделирования - теория подобия, в которой основным понятием является - понятие аналогии: сходство объектов по их качественным и количественным признакам.
Основные виды качественной аналогии:
Все эти виды объединяются понятием обобщенной аналогии - абстракцией. Она выражает особого рода соответствие между сопоставляемыми объектами, между моделью и прототипом.
Кибернетическая аналогия - подобие функций, ведущее к установлению структурного сходства сравниваемых систем управления и нахождения способа (алгоритма) управления, обеспечивающего достижение оптимума цели путем преобразования потоков информации. Константой подобия в данном случае часто служит алгоритм оптимального управления.
Физическая аналогия
- подобие при наличии
Основным видом количественной аналогии является понятие математической аналогии. Это аналогия формы уравнений и аналогия соотношений между переменными в уравнениях оригинала и модели.
Частные случаи математической аналогии - геометрическая, временная. Геометрическая - представляет собой подобие пространственных пропорций частей объекта, подобие геометрических образов. Временная - подобие функции времени, при котором константа подобия показывает, в каком отношении к ней находятся такие параметры, как период, задержка и т. д.
В литературе отмечается неразрывная связь модели с аналогией. Но “аналогия не есть модель”. Неопределенности порождаются нечетким различием:
Соответственно этому можно дать различные определения аналогии.
1. Аналогия - объективная основа моделирования.
Определение: Аналогия есть понятие, выражающее определенное частичное или полное подобие между различными объектами в тех или иных свойствах, функциях, соотношениях элементов.
2. Отличие научной
аналогии от ненаучной (
Определение: Аналогия - есть ассоциация мыслей о разных предметах.
3. Аналогия - эвристический метод моделирования.
Определение: Аналогия - есть метод научного поиска и пояснения (разъяснения, объяснения) изучаемого объекта посредством сопоставления его с известным наглядным объектом.
4. Аналогия - способ восприятия и теоретического осмысления информации, и в этом смысле она является средством выбора модели.
Определение: Аналогия -
есть теоретический метод объяснения
визуально ненаблюдаемых
5. Аналогия - логическая основа
моделирования, но
Определение: Научная аналогия - есть умозаключение, в ходе которого на основании обнаружения сходства или общности ряда существенных признаков у двух объектов или частичного тождества соотношений их элементов и учета различий между ними в других отношениях, делается вывод о том, что одному из них присущи такие свойства, которые обнаружены при исследовании другого объекта (модели). Вывод по аналогии включает интерпретацию информации, полученной исследованием модели. Такой вывод не сводится к экстраполяции информации с одного объекта на другой. Главное заключается в том, чтобы объяснить информацию, осмыслить ее, определить и выразить результат исследования модели в терминах предмета-оригинала. Интерпретацию и подтверждение результатов моделирования следует рассматривать как основной аргумент в пользу тезиса о том, что аналогия и ее частный случай подобие - есть объективное и логическое основание метода моделирования. Вообще, аналогия это среднее, опосредующее звено между моделью и объектом.