Назначение экспертных систем

Автор работы: Пользователь скрыл имя, 09 Мая 2012 в 14:15, реферат

Краткое описание

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е.Фейгенбаумом как "привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".

Содержимое работы - 1 файл

Документ Microsoft Office Word (2).docx

— 121.53 Кб (Скачать файл)

Назначение  экспертных систем

В начале восьмидесятых  годов в исследованиях по искусственному интеллекту сформировалось самостоятельное  направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных  для эксперта-человека, получают результаты, не уступающие по качеству и эффективности  решениям, получаемым экспертом. Исследователи  в области ЭС для названия своей  дисциплины часто используют также  термин "инженерия знаний", введенный  Е.Фейгенбаумом как "привнесение  принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".

Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в  дальнейшем будем использовать их как  синонимы), получили значительное распространение  в мире. Важность экспертных систем состоит в следующем:

 технология  экспертных систем существенно  расширяет круг практически значимых  задач, решаемых на компьютерах,  решение которых приносит значительный  экономический эффект;

 технология  ЭС является важнейшим средством  в решении глобальных проблем  традиционного программирования: длительность  и, следовательно, высокая стоимость  разработки сложных приложений;

высокая стоимость  сопровождения сложных систем, которая  часто в несколько раз превосходит  стоимость их разработки; низкий уровень  повторной используемости программ и т.п.;

 объединение  технологии ЭС с технологией  традиционного программирования  добавляет новые качества к  программным продуктам за счет: обеспечения динамичной модификации  приложений пользователем, а не  программистом; большей "прозрачности" приложения (например, знания хранятся  на ограниченном ЕЯ, что не  требует комментариев к знаниям,  упрощает обучение и сопровождение); лучшей графики; интерфейса и  взаимодействия.

По мнению ведущих  специалистов , в недалекой перспективе  ЭС найдут следующее применение:

 ЭС будут  играть ведущую роль во всех  фазах проектирования, разработки, производства, распределения, продажи,  поддержки и оказания услуг;

 технология  ЭС, получившая коммерческое распространение,  обеспечит революционный прорыв  в интеграции приложений из  готовых интеллектуально-взаимодействующих  модулей.

ЭС предназначены  для так называемых неформализованных  задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение  формализованных задач.

Неформализованные задачи обычно обладают следующими особенностями:

 ошибочностью, неоднозначностью, неполнотой и  противоречивостью исходных данных;

 ошибочностью, неоднозначностью, неполнотой и  противоречивостью знаний о проблемной  области и решаемой задаче;

 большой размерностью  пространства решения, т.е. перебор  при поиске решения весьма  велик;

 динамически  изменяющимися данными и знаниями.

Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс  задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.

Экспертные системы  и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический  поиск решения (а не исполнение известного алгоритма).

Экспертные системы  применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности  решения экспертные системы не уступают решениям эксперта-человека. Решения  экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление ) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.

Коммерческие  успехи к фирмам-разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960 - 1985 гг. успехи ИИ касались в основном исследовательских  разработок, которые демонстрировали  пригодность СИИ для практического  использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 - 1990 гг.), в первую очередь ЭС, а в последние  годы системы, воспринимающие естественный язык (ЕЯ-системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.

Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся  на них ожиданий и умерли. Причины  таких заблуждений состоят в  том, что эти авторы рассматривали  ЭС как альтернативу традиционному  программированию, т.е. они исходили из того, что ЭС в одиночестве (в  изоляции от других программных средств) полностью решают задачи, стоящие  перед заказчиком. Надо отметить, что  на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp-машины) давала основания  предполагать, что интеграция ЭС с  традиционными, программными системами  является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых  реальными приложениями. Однако в  настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются  в полном соответствии с современными технологическими тенденциями традиционного  программирования, что снимает проблемы, возникающие при создании интегрированных  приложений.

Причины, приведшие  СИИ к коммерческому успеху, следующие.

Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

Открытость  и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].

Использование языков традиционного  программирования и  рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.

Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило:снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).

Проблемно/предметно-ориентированные  ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ [9] обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты,классы,правила,процедуры).

Структура экспертных систем

Типичная  статическая ЭС состоит из следующих  основных компонентов (рис. 1.):

  • решателя (интерпретатора);
  • рабочей памяти (РП), называемой также базой данных (БД);
  • базы знаний (БЗ);
  • компонентов приобретения знаний;
  • объяснительного компонента;
  • диалогового компонента.
 

 

База  данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База  знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

Объяснительный  компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый  компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

В разработке ЭС участвуют представители следующих  специальностей:

эксперт в проблемной области, задачи которой будет решать ЭС;

инженер по знаниям - специалист по разработке ЭС (используемые им технологию, методы называют технологией (методами) инженерии знаний);

программист по разработке инструментальных средств (ИС), предназначенных для ускорения  разработки ЭС.

Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.

Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний.

Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС; осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС; выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.

Программист разрабатывает ИС (если ИС разрабатывается заново), содержащее в пределе все основные компоненты ЭС, и осуществляет его сопряжение с той средой, в которой оно будет использовано.

Экспертная система  работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).

В режиме приобретения знаний общение с ЭС осуществляет (через посредничество инженера по знаниям) эксперт. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования с данными, характерные для рассматриваемой области.

Отметим, что  режиму приобретения знаний в традиционном подходе к разработке программ соответствуют  этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного  подхода в случае ЭС разработку программ осуществляет не программист, а эксперт (с помощью ЭС), не владеющий программированием.

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу). В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее. Если реакция системы не понятна пользователю, то он может потребовать объяснения:

Информация о работе Назначение экспертных систем