Автор работы: Пользователь скрыл имя, 21 Октября 2013 в 20:06, реферат
Микропроцессор – функционально законченное устройство обработки информации, управляемое хранимой в памяти программой. Появление микропроцессоров (МП) стало возможным благодаря развитию интегральной электроники. Это позволило перейти от схем малой и средней степени интеграции к большим и сверхбольшим интегральным микросхемам (БИС и СБИС). Несмотря на то, что возможности многокристальных МП существенно выше, чем у однокристальных, многие прикладные задачи успешно решаются на основе однокристального микропроцессора.
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 3
ВВЕДЕНИЕ 4
МИКРОПРОЦЕССОР 5
Развитие микропроцессоров 6
1.2 Достоинства микропроцессоров 10
1.3 Принцип работы икропроцессора 11
АРХИТЕКТУРА МИКРОПРОЦЕССОРА 14
2.1 Архитектурные особенности 15
2.2 Разрядность 16
2.3 Обьем адресуемой памяти 18
3. ПРОИЗВОДИТЕЛЬНОСТЬ МИКРОПРОЦЕССОРА 19
4. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПОЛУПРОВОДНИКОВ 20
ЗАКЛЮЧЕНИЕ 24
БИБЛИОГРАФИЧЕСКИЙ СПИСОК……………………………………..............25
ПРИЛОЖЕНИЕ 1 26
ПРИЛОЖЕНИЕ 2 27
ПРИЛОЖЕНИЕ 3 28
ПРИЛОЖЕНИЕ 4 30
служит для приема и хранения адресной части выполняемой команды. Возможное количество адресов, определяется разрядностью регистра.
Буферный регистр данных используется для временного хранения выбранного из памяти слова перед передачей его во внешнюю шину данных. Его разрядность определяется количеством байт информационного слова.
Регистр команд принимает и хранит код очередной команды, адрес которой находится в счетчике команд. По сигналу УУ в него передается из регистра хранимая там информация.
Рис. 5 Основные части микропроцессора
Шиной называют группу линий передачи информации, объединенных общим функциональным признаком. В микропроцессорной схеме используется три вида шин: данных, адресов и управления.
2. АРХИТЕКТУРА МИКПРОЦЕССОРА
Архитектура микропроцессора – принцип его внутренней организации, общая структура, конкретная логическая структура отдельных устройств.
Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.
Микроархитектура микропроцессора - это аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.
Макроархитектура микропроцессора - это система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.
В общем случае под архитектурой ЭВМ понимается абстрактное представление машины в терминах основных функциональных модулей, языка ЭВМ, структуры данных.
CISC (Complex Instruction Set Computer) - Компьютер со сложной системой команд. Исторически они первые и включают большое количество команд. Все микропроцессоры корпораций Intel (Integrated Electronics) и AMD (Advanced Micro Devices) относятся к категории CISC.
RISC (Reduced Instruction Set Computer) - Компьютер с сокращенной системой команд. Упрощена система команд и сокращена до такой степени, что каждая инструкция выполняется за единственный такт. Вследствие этого упростилась структура микропроцессора, и увеличилось его быстродействие.
Пример микропроцессора с RISC-аpхитектуpой - Power PC. Микропроцессор Power PC начал разрабатываться в 1981 году тремя фирмами: IBM, Motorola, Apple.
MISC (Minimum Instruction Set Computer) - Компьютер с минимальной системой команд. Последовательность простых инструкций объединяется в пакет, таким образом, программа преобразуется в небольшое количество длинных команд.
2.2. Разрядность
Разрядность – максимальное количество разрядов двоичного кода, которые могут обрабатываться или передаваться одновременно.
Современные микропроцессоры построены на 32-х битной архитектуре x86 или IA-32 (Intel Architecture 32 bit), но совсем скоро произойдет переход на более совершенную, производительную 64-х битную архитектуру Рис. 6. Отличия IA-64 1(Intel Architecture 64 bit). Фактически переход уже начался, этому свидетельствует массовый выпуск и выход в продажу в 2003 году нового микропроцессора Athlon 64 корпорации AMD (Advanced Micro Devices), этот микропроцессор примечателен тем, что может работать как с 32-х битными приложениями, так и с 64-х битными. Производительность 64-х битных микропроцессоров намного выше.
Рис. 6. Отличия IA-64 1
Разрядность микропроцессора обозначается m/n/k/ и включает:
m - разрядность внутренних регистров, определяет принадлежность к тому или иному классу процессоров;
n - разрядность шины данных, определяет скорость передачи информации;
k - разрядность шины адреса, определяет размер адресного пространства. (Например, микропроцессор i8088 характеризуется значениями m/n/k=16/8/20)
Объём адресуемой памяти – максимальный объем памяти, который может обслужить микропроцессор.
32-х разрядный микропроцессор может обслужить 64 Гб (4х109 байт) памяти, а 64-х разрядный микропроцессор может обслужить 64 Тб (64х1012 байт) памяти.
Набор дополнительных инструкций - применяются в современных CISC-микропроцессорах и способны значительно ускорить их работу. Естественно только при условии поддержки данных наборов со стороны приложения. Все традиционные современные процессоры поддерживают набор инструкций MMX, который был самым первым (разработан корпорацией Intel еще в 1997 году). MMX расшифровывается как MultiMedia eXtensions (мультимедийные расширения). Он представил дополнительные возможности, ориентированные на обработку цифрового изображения и звука. В основе технологии лежит концепция (микроархитектура) SIMD (Single Instruction Many Data – "одна команда, много данных"), когда при помощи одной инструкции одновременно обрабатывается несколько элементов данных. SSE, SSE2, 3DNow! - дальнейшее развитие этой идеи. Микропроцессоры Intel Pentium 3 поддерживают SSE, а Pentium 4 и AMD Athlon 64 еще и SSE2 (это относится и к соответствующим микропроцессорам Intel Celeron). Процессоры AMD Athlon и Duron поддерживают наборы инструкций 3DNow Professional и MMX, в Athlon XP была добавлена поддержка SSE (на уровне микрокода ядра).
Производительность
1. Тактовая частота (Частота ядра) (Internal clock) – это количество электрических импульсов в секунду. Каждый импульс несет в себе некую информацию - это могут быть команды процессору или данные памяти. Тактовая частота кварцевого генератора выдерживается с очень высокой точностью и лежит в мега или гигагерцовом диапазоне. Один герц - один импульс, один мегагерц - один миллион импульсов, один гигагерц - тысяча мегагерц. Микропроцессор, работающий на тактовой частоте 800 МГц, выполняет 800 миллионов рабочих тактов в секунду. Современные микропроцессоры работают на частотах от 300 МГц до 4,7 ГГц.
2. Частота системной шины (System clock или Front Side Bus) – системная шина служит для связи микропроцессора с остальными устройствами. Микропроцессор имеет две частоты: тактовая частота ядра и частота системной шины. Чем выше частота системной шины, тем выше скорость передачи данных между микропроцессором и остальными устройствами.
3. Объем Кэш-памяти (Cache) – Кэш-память быстрая память малой емкости, используемая процессором для ускорения операций, требующих обращения к памяти. Кеш – промежуточное звено между микропроцессором и оперативной памятью. Различают несколько уровней кэша: кэш первого уровня (L1) - кэш команд (инструкций) которые предстоит исполнить, кэш первого уровня размещается на одном кристалле с процессором Чем больше L2, тем дороже процессор, т.к. память для кэша еще очень дорога. Поэтому эффективнее увеличивать частоту кэша, а для этого он должен находиться как можно ближе к ядру процессора. Кэш-память может работать на частоте 1/4, 1/3, 1/2, 1/1 от частоты ядра. Современные микропроцессоры имеют кэш объемом от 8 Кб до 5Мб.
В последние годы к стадии возможности использования в коммерческом производстве подошел целый ряд технологий, позволяющих заметно увеличить скорость работы транзисторов, либо столько же заметно уменьшить размер чипа без перехода на более тонкий технологический процесс. Некоторые из этих технологий уже начали применяться в течение последних месяцев, их названия упоминаются в новостях, относящихся к компьютерам, все чаще. Эта статья – попытка сделать краткий обзор подобных технологий, попытавшись заглянуть в самое ближайшее возможное будущее чипов, находящихся в наших компьютерах.
Первая интегральная схема, где соединения между транзисторами сделаны прямо на подложке, была сделана более 40 лет назад. За это время технология их производства претерпела ряд больших и малых улучшений, пройдя от первой схемы Джека Килби до сегодняшних центральных процессоров, состоящих из десятков миллионов транзисторов, хотя для серверных процессоров впору уже говорить о сотнях миллионов.
Здесь пойдет речь о некоторых последних технологиях в этой области, таких, как медные проводники в чипах, SiGe, SOI, перовскиты. Но сначала необходимо в общих чертах затронуть традиционный процесс производства чипов из кремниевых пластин. Нет необходимости описывать процесс превращения песка в пластины, поскольку все эти технологии не имеют к столь базовым шагам никакого отношения, поэтому начнем с того, что мы уже имеем кремниевую пластину, диаметр которой на большинстве сегодняшних фабрик, использующих современные технологии, составляет 20 см. Ближайшим шагом, являющейся прекрасным изолятором и защитой поверхности пластины при литографии.
Дальше на пластину наносится еще один защитный слой, на этот раз - светочувствительный, и происходит одна из ключевых операций - удаление в определенных местах ненужных участков его и пленки окислов с поверхности пластины, до обнажения чистого кремния, с помощью фотолитографии.
На первом этапе пластину
с нанесённой на её поверхность плёнкой
светочувствительного слоя помещают в
установку экспонирования, которая
по сути работает как фотоувеличитель.
В качестве негатива здесь используется
прецизионная маска - квадратная пластина
кварцевого стекла покрытая плёнкой
хрома там, где требуется. Хромированные
и открытые участки образуют изображение
одного слоя одного чипа в масштабе
1:5. По специальным знакам, заранее
сформированным на поверхности пластины,
установка автоматически
В результате засвечивания химический состав тех участков светочувствительного слоя, которые попали под прозрачные области фотомаски, меняется. Что дает возможность удалить их с помощью соответствующих химикатов или других методов, вроде плазмы или рентгеновских лучей.
После чего аналогичной процедуре (уже с использованием других веществ, разумеется) подвергается и слой окислов на поверхности пластины. И снова, опять же, уже новыми химикатами, снимается светочувствительный слой:
Потом накладывается следующая
маска, уже с другим шаблоном, потом
еще одна, еще, и еще... Именно этот
этап производства чипа является критическим
в плане ошибок: любая пылинка
или микроскопический сдвиг в
сторону при наложении
Поверхность пластины тщательно
очищается, чтобы вместе с примесями
в кремний не попали лишние вещества,
после чего она попадает в камеру
для высокотемпературной
Все осталось только проложить по поверхности чипа металлические соединения (сегодня для этой роли обычно используется алюминий, а соединения сегодня обычно расположены в 6 слоев), и дело сделано. В общих чертах, так в результате и получается, к примеру, классический МОП транзистор: при наличии напряжения на затворе начинается перемещение электронов между измененными областями кремния.
Теперь, слегка пробежавшись по классическому процессу создания сегодняшних чипов, можно более уверенно перейти к обзору технологий, которые предполагают внести определенные коррективы в эту картину.
ЗАКЛЮЧЕНИЕ
Мировая индустрия персональных компьютеров основывается на достижениях микроэлектронной техники, промышленных стандартах и постоянных технологических инновациях. Компания Intel дала массу ярких примеров стратегического планирования будущих технологий (интерфейсы, стандартные разъемы, кооперативные программы, венчурные инициативы, developer.intel.com). Новые архитектурные решения, стандартные интерфейсы и передовые связные технологии персональных компьютеров ежедневно зарождаются в лабораториях и исследовательских центрах компании.