Локальные вычислительные сети

Автор работы: Пользователь скрыл имя, 19 Января 2011 в 14:53, контрольная работа

Краткое описание

В настоящее время наиболее важным применением компьютеров становится создание сетей, обеспечивающих единое информационное пространство для многих пользователей.
Компьютерной сетью называется совокупность взаимосвязанных через каналы передачи данных компьютеров, обеспечивающих пользователей средствами обмена информацией и коллективного использования ресурсов сети: аппаратных, программных и информационных.

Содержание работы

Введение…………………………………………………………………………...3
1. Понятие ЛВС и ее преимущетва……………………………………………..4
2. Базовая модель OSI (Open System Interconnection)………………………….5
3. Архитектура ЛВС……………………………………………………………...7
1. Типы сетей………………………………………………………………...7
2. Топологии вычислительной сети………………………………………..9
3. Сетевые устройства и средства коммуникаций……………………….13
1. Виды используемых кабелей……………………………………...13
2. Сетевая карта……………………………………………………….17
3. Разветвитель (HUB)………………………………………………..18
4. Репитер……………………………………………………………...18
4. Типы построения сетей по методам передачи информации…………..18
4. Правила монтажа кабельной части ЛВС……………………………………19
5.Подключение локальной сети к интернету.…….…………………….…….23
Заключение……………………………………………………………………….26
Список литературы………………………………………………………………27

Содержимое работы - 1 файл

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ.docx

— 221.44 Кб (Скачать файл)

   Одноранговые  сети относительно просты. Поскольку  каждый компьютер является и клиентом, и сервером, нет необходимости  в мощном центральном сервере  или в других компонентах, обязательных для более сложных сетей. Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных и дорогих компьютеров.

   В одноранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером. Выделенные серверы функционируют исключительно в качестве серверов, но не клиентов или рабочих станций.

   В такие  операционные системы, как Microsoft Windows NT Workstation, Microsoft Windows for Workgroups и Microsoft Windows 95, встроена поддержка одноранговых сетей. Поэтому, чтобы установить одноранговую сеть дополнительного программного обеспечения не требуется.

   Одноранговая  компьютерная сеть выглядит так:

  1. Компьютеры расположены на рабочих столах пользователей.
  2. Пользователи сами выступают в роли администраторов, и сами обеспечивают защиту информации.
  3. Для объединения компьютеров в сеть применяется простая кабельная система.

   Если  эти условия выполняются, то, скорее всего выбор одно ранговой сети будет  правильным.

Защита подразумевает  установку пароля на разделяемый  ресурс, например на каталог. Централизованно управлять защитой в одно ранговой сети очень сложно, так как каждый пользователь устанавливает ее самостоятельно, да и общие ресурсы могут находиться на всех компьютерах, а не только на центральном сервере. Такая ситуация представляет серьезную угрозу для всей сети, кроме того некоторые пользователи могут вообще не устанавливать защиту.

   Сети  на основе сервера.

   Если  к сети подключено более 10 пользователей, то одноранговая сеть, где компьютеры выступают в роли клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей используют выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер. Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом.

   С увеличением  размеров сети и объемов сетевого трафика необходимо увеличивать  количество серверов. Распределение  задач среди нескольких серверов гарантирует, что каждая задача будет  выполняться самым эффективным  способом из всех возможных.

   Круг  задач, которые должны выполнять  серверы, многообразен и сложен. Чтобы  приспособиться  возрастающим потребностям пользователей, серверы в больших сетях стали специализированными. Например, в сети Windows NT существуют различные типы серверов:

   Файл-серверы  и принт-серверы управляют доступом соответственно к файлам и принтерам, на серверах приложений выполняются  прикладные части клиент-серверных  приложений, а так же находятся  данные доступные клиентам. Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти  серверы отличаются от файл-серверов и принт-серверов. В принт-серверах, файл или данные целиком копируются на запрашиваемый компьютер. А в сервере приложений на запрашиваемый компьютер посылаются только результаты запроса. Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на ваш компьютер с сервера загружаются только результаты запроса.

   В расширенной  сети использование серверов различных  типов становится наиболее актуальным. Необходимо поэтому учитывать всевозможные нюансы, которые могут проявиться при разрастании сети, с тем чтобы изменение роли определенного сервера в дальнейшем не отразилось на работе всей сети.

   Основным  аргументом при работе в сети на основе выделенного сервера является, как правило, защита данных. В таких  сетях, например как Windows NT Server, проблемами безопасности может заниматься один администратор.

   Поскольку жизненно важная информация расположена  централизованно, то есть, сосредоточена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копирование. Благодаря избыточным системам, данные на любом сервере могут дублироваться в реальном времени, поэтому в случае повреждения основной области хранения данных информация не будет потеряна – легко воспользоваться резервной копией. Сети на основе сервера могут поддерживать тысячи пользователей. Сетью такого размера, будь она одноранговой, невозможно было бы управлять. Так как компьютер пользователя не выполняет функции сервера, требования к его характеристикам зависят от самого пользователя.

3.2. Топологии вычислительной сети.

       Топология сети – это логическая схема соединения каналами связи компьютеров (узлов сети). Чаще всего в локальных сетях используется одна из трех основных топологий: моноканальная, кольцевая и звездообразная. Большинство других топологий являются производными от перечисленных. Для определения последовательности доступа узлов сети к каналу и предотвращения наложения передач пакетов данных различными узлами необходим метод доступа.

Метод доступа  – это набор правил, определяющий использование канала передачи данных, соединяющего узлы сети на физическом уровне. Самыми распространенными методами доступа в локальных сетях  перечисленных топологий являются Ethernet, Token-Ring, Arcnet, реализуемые соответствующими сетевыми платами (адаптерами). Сетевая  плата является физическим устройством, которое устанавливается в каждом компьютере сети и обеспечивает передачу и прием информации по каналам  связи

Топология типа звезда.

   Концепция топологии сети в виде звезды (рис.1) пришла  из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети. 

      рис.1 Топология в виде звезды 

   Пропускная  способность сети определяется вычислительной мощностью узла и гарантируется  для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

   Кабельное соединение довольно простое, так как  каждая рабочая станция связана  с узлом. Затраты на прокладку  кабелей высокие, особенно когда  центральный узел географически  расположен не в центре топологии.

   При расширении вычислительных сетей не могут быть использованы ранее выполненные  кабельные связи: к новому рабочему месту необходимо прокладывать отдельный  кабель из центра сети.

   Топология в виде звезды является наиболее быстродействующей  из всех топологий вычислительных сетей, поскольку передача данных между  рабочими станциями проходит через  центральный узел (при его хорошей  производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к  другой невысокая по сравнению с  достигаемой в других топологиях.

    Производительность  вычислительной сети в первую  очередь зависит от мощности  центрального файлового сервера.  Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

   Центральный узел управления - файловый сервер может  реализовать оптимальный механизм защиты против несанкционированного доступа к инфо ии. Вся вычислительная сеть может управляться из ее центра.рмац 

   Кольцевая топология.

   При кольцевой  топологии (рис.2) сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3

рис.2 Кольцевая топология

с рабочей станцией 4 и т.д. Последняя рабочая станция  связана с первой. Коммуникационная связь замыкается в кольцо.

   Прокладка кабелей от одной рабочей станции  до другой может быть довольно сложной  и дорогостоящей, особенно если географически  рабочие станции расположены  далеко от кольца (например, в линию).

   Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять “в дорогу” по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

         Основная  проблема при кольцевой топологии  заключается в том, что каждая рабочая станция должна активно  участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

   Подключение новой рабочей станции требует  кратко срочного выключения сети, так  как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

   Шинная  топология.

   При шинной топологии (рис.3) среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети. 
 

рис.3 Шинная топология

   Рабочие станции в любое время, без  прерывания работы всей вычислительной сети, могут быть подключены к ней  или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

   В стандартной  ситуации для шинной сети Ethernet часто  используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выключение и особенно подключение к такой  сети требуют разрыва шины, что  вызывает нарушение циркулирующего потока информации и зависание системы.

   Древовидная структура ЛВС.

   Наряду  с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидная (рис.4) структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).

   Вычислительные  сети с древовидной структурой применяются  там, где невозможно непосредственное применение базовых сетевых структур в чистом виде.  

      

      рис.4 Древовидная структура 

3.3. Сетевые устройства и средства коммуникаций.

   В качестве средств коммуникации наиболее часто  используются витая пара, коаксиальный кабель, оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели:

  • стоимость монтажа и обслуживания,
  • скорость передачи информации,
  • ограничения на величину расстояния передачи информации       без дополнительных усилителей-повторителей (репитеров),
  • безопасность передачи данных.

      Главная проблема заключается в одновременном  обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость.

    3.3.1.Виды используемых кабелей. 

   Витая пара.

    

   Кабель  из витой (скрученной пары) пары (twisted pair) является на сегодняшний день стандартом для ЛВС.Он позволяет передавать информацию со скоростью до 10 Мбит/с., легко наращивается, однако не защищен от помех. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и простота установки.

     В отличие от коаксиального кабеля, который имеет только один проводник, переносящий сигнал, и "землю", кабели на основе витой пары (ТР, twisted pair), применяемые в структурированных кабельных сетях, имеют до четырех пар изолированных медных проводов в одной металлической оплетке или без нее (различают неэкранированный [UTP] и экранированный [STP] кабели). Каждая пара проводов для защиты от переходного затухания, вызванного электромагнитными помехами от соседних пар и внешних источников, скручивается с различным шагом - количеством витков на дюйм.

Информация о работе Локальные вычислительные сети