Квантование сигнала

Автор работы: Пользователь скрыл имя, 14 Марта 2011 в 09:30, курсовая работа

Краткое описание

Квантование сигнала - преобразование сигнала в последовательность импульсов (квантование сигнала по времени) или в сигнал со ступенчатым изменением амплитуды (квантование сигнала по уровню), а также одновременно и по времени, и по уровню. Применяется при преобразовании непрерывной величины в код в вычислительных устройствах, цифровых измерительных приборах и др.

Содержание работы

1.Сигналы; кодирование и квантование сигналов. Системы счисления.
2.Центральный процессор, системные шины.
3.Понятие системного программного обеспечения: назначение, возможности, структура; операционные системы.
4.Электронные презентации
5.Классификация и формы представления моделей
6.Операторы циклов и ветвления.
7.Основные понятия языков программирования. Развитие языков программирования.
8.Назначение и основы использования систем искусственного интеллекта; базы знаний, экспертные системы, искусственный интеллект
9.Компьютерные коммуникации и коммуникационное оборудование.
10.Информационная безопасность и ее составляющие.

Содержимое работы - 1 файл

Аня Жадан.doc

— 219.50 Кб (Скачать файл)
  • символьное (семиотическое, нисходящее) основано на моделировании высокоуровневых процессов мышления человека, на представлении и использовании знаний;
  • нейрокибернетическое (нейросетевое, восходящее) основано на моделировании отдельных низкоуровневых структур мозга (нейронов).

     Таким образом, сверхзадачей искусственного интеллекта является построение компьютерной интеллектуальной системы, которая обладала бы уровнем эффективности решений неформализованных задач, сравнимым с человеческим или превосходящим его. В качестве критерия и конструктивного определения интеллектуальности предложен мысленный эксперимент, известный как тест Тьюринга. В современной постановке можно рассматривать эту задачу как задачу приближения сингулярности в её сверхинтеллектуальном понимании.

     На  данный момент не существует систем искусственного интеллекта, однозначно отвечающих основным задачам, обозначенным выше. Успехи в исследовании аналоговых и обратимых вычислений позволят совершить большой шаг вперёд в построении систем искусственного интеллекта.

     Наиболее  часто используемые при построении систем искусственного интеллекта парадигмы  программирования - функциональное программирование и логическое программирование. От традиционных структурного и объектно-ориентированного подходов к разработке программной логики они отличаются нелинейным выводом решений и низкоуровневыми средствами поддержки анализа и синтеза структур данных.

 

Компьютерные коммуникации и коммуникационное оборудование.

 

       Только с появлением компьютеров развитие коммуникаций приобретает поистине небывалый  размах. Новая среда позволяет  обмениваться электронными копиями  информации со сказочными скоростями и хранить их в виде, удобном для корректировки.  
       Однако, чтобы пользоваться этими новыми средствами коммуникаций, необходимы определенные знания. Компьютеры соединяются между собой в глобальную систему, создавая единую информационную среду. Появляется глобальное информационное поле, доступное с любого расстояния. Все владельцы компьютеров, имеющие доступ к этому полю, могут обеспечиваться любой информацией. Участники коммуникаций могут вступать в дискуссию по любым вопросам с людьми из разных точек нашей планеты. Компьютерные коммуникации дают возможность проявить себя, корректировать свои идеи. Совместная обработка информации на огромных расстояниях открывает границы между народами для совместной деятельности. Таким образом, мы пришли к понятию компьютерной коммуникационной среды.

     Компьютерная коммуникационная среда-совокупность условий и средств обмена информацией между людьми с помощью компьютеров.Рассмотрим, какие технические средства необходимы для коммуникации в компьютерной среде. Развитие компьютерных коммуникаций во многом было связано с тем, что людям приходилось работать сообща над весьма сложными и обширными задачами, а также пользоваться общими базами данных. Понадобилось объединить несколько компьютеров, чтобы передавать информацию с одного из них на другой, совместно использовать или изменять ее. Так появились компьютерные сети. 
      Компьютерная сеть-система взаимосвязанных компьютеров, предназначенных для передачи, хранения и обработки информации. 
      В небольших сетях все компьютеры обычно равноправны, т.е. пользователи самостоятельно решают, какие ресурсы своего компьютера сделать общедоступными по сети. Такие сети называются одноранговыми. Если к сети подключено более 10 компьютеров, одноранговая сеть может оказаться недостаточно производительной. Для увелтчния производительности , а также в целях обеспечения большей надежности при хранении информации в сети, некоторые компьютеры специально выделяют для хранения файлов или программ-приложений. Такие компьютеры называются серверами.Сервер должен быть мощным, иметь весьма значительный объем оперативной и дисковой памяти.      

     Сервер-главный компьютер сети, который предоставляет доступ к общей базе данных, обеспечивает совместное использование устройств ввода-вывода и взаимодействие пользователей. 
      Компьютеры, подключенные к сети, имеют доступ ко всем сервисным услугам сервера. Но это возможно лишь тогда, когда каждая машина занесена в список клиентов сервер. Это означает. Что ему выделяется регистрационное имя и пароль. 
       Клиент-компьютер - компьютер сети, который имеет доступ к информационным ресурсам или устройствам сервера.
 

    Коммуникационное  оборудование предназначено для подключения персональных компьютеров, а также других устройств к технологическим сетям, построенным на базе выделенных каналов тональной частоты, радиоканалов и цифровых каналов передачи данных, а также позволяет построить многоуровневые технологические сети с применением различных физических каналов передачи данных в различных сегментах сети.

    Сетевой адаптер – это специальное устройство, которое предназначено для сопряжения компьютера с локальной сетью и для организации двунаправленного обмена данными в сети. Сетевая карта вставляется в свободный слот расширения на материнской плате и  оборудована собственным процессором и памятью, а для подключения к сети имеет разъем типа RJ-45. Наиболее распространены карты типа PCI, которые вставляются в слот  расширения PCI на материнской плате. В зависимости от применяемой технологии Ethernet, Fast Ethernet или Gigabit Ethernet и сетевой карты скорость передачи данных в сети может быть: 10, 100 или 1000 Мбит/с. 
Сетевые кабели 
В качестве кабелей соединяющих отдельные ПК и коммуникационное оборудование в локальных сетях применяются: 
1. Витая пара – передающая линия связи, которая представляет собой два провода, перекрученных друг с другом с определенным шагом с целью снижения влияния электромагнитных полей. 
2. Коаксиальный кабель – кабель, который состоит из одного центрального проводника в изоляторе и второго проводника расположенного поверх изолятора. 
3. Оптический кабель – это кабель, в котором носителем информации является световой луч, распространяющийся по оптическому волокну. 
 
Кроме того, в качестве передающей среды в беспроводных локальных сетях используются радиоволны в микроволновом диапазоне. К коммуникационному оборудованию локальных сетей относятся: трансиверы, повторители, концентраторы, мосты, коммутаторы, маршрутизаторы и шлюзы. 
 
Часть оборудования (приемопередатчики или трансиверы, повторители или репитеры и концентраторы или hubs) служит для объединения нескольких компьютеров в требуемую конфигурацию сети. Соединенные с концентратором ПК образуют один сегмент локальной сети, т.е. концентраторы являются средством физической структуризации сети, так как, разбивая сеть на сегменты, упрощают подключение к сети большого числа ПК. 
 
Другая часть оборудования (мосты, коммутаторы) предназначены для логической структуризации сети. Так как локальные сети являются широковещательными (Ethernet и Token Ring), то с увеличением количества компьютеров в сети, построенной на основе концентраторов, увеличивается время задержки доступа компьютеров к сети и возникновению коллизий. Поэтому в сетях построенных на хабах устанавливают мосты или коммутаторы между каждыми тремя или четырьмя концентраторами, т.е. осуществляют  логическую  структуризацию сети с целью недопущения коллизий. 
 
Третья часть оборудования предназначена для объединения нескольких локальных сетей в единую сеть: маршрутизаторы (routers), шлюзы (gateways). К этой части оборудования можно отнести и мосты (bridges), а также коммутаторы (switches). 
 
Повторители (repeater) – устройства для восстановления и усиления сигналов в сети, служащие для увеличения ее длины. 
 
Приемопередатчики (трансиверы) – это устройства, предназначенные для приема пакетов от контроллера рабочих станций сети и передачи их в сеть. Трансиверы (конверторы) могут преобразовывать электрические сигналы в другие виды сигналов (оптические или радиосигналы) с целью использования других сред передачи информации. 
 
Концентраторы или хабы (Hub) – устройства множественного доступа, которые объединяет в одной точке отдельные физические отрезки кабеля, образуют общую среду передачи данных или сегменты сети, т.е. хабы используются для создания сегментов и являются средством физической структуризации сети.  
 
Мосты (bridges) – это программно – аппаратные устройства, которые обеспечивают соединение нескольких локальных сетей между собой. Мосты предназначены для логической структуризации сети или для соединения в основном идентичных сетей, имеющих некоторые физические различия. 
 
Коммутаторы (switches) - программно – аппаратные устройства являются быстродействующим аналогом мостов, которые делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту коммутатора. При поступлении данных с компьютера - отправителя на какой-либо из портов коммутатор передаст эти данные, но не на все порты, как в концентраторе, а только на тот порт, к которому подключен сегмент, содержащий компьютер - получатель данных. 
 
Маршрутизаторы (routers). Эти устройства обеспечивают выбор маршрута передачи данных между несколькими сетями, имеющими различную архитектуру или протоколы. Они обеспечивают сложный уровень сервиса, так как могут выполнять “интеллектуальные” функции: выбор наилучшего маршрута для передачи сообщения, адресованного другой сети; защиту данных; буферизацию передаваемых данных; различные протокольные преобразования. Маршрутизаторы применяют только для связи однородных сетей. 
 
Шлюзы (gateway) – устройства (компьютер), служащие для объединения разнородных сетей с различными протоколами обмена. Шлюзы выполняют протокольное преобразование для сети, в частности преобразование сообщения из одного формата в другой.

 

Информационная безопасность и ее составляющие.

     Информационная  безопасность — состояние защищенности информационной среды общества, обеспечивающее ее формирование, использование и развитие в интересах граждан, организаций, государства (определение согласно ст. 2. Федерального закона от 04.07.96 № 85 «Об участии в международном информационном обмене»).

     В качестве стандартной модели безопасности часто приводят модель CIA:

  • конфиденциальность (англ.confidentiality);
  • целостность (integrity);
  • доступность (availability).

     Под конфиденциальностью понимается доступность  информации только определённому кругу  лиц, под целостностью — гарантия существования информации в исходном виде, под доступностью — возможность получение информации авторизованным пользователем в нужное для него время.

     Выделяют  и другие категории:

  • аутентичность — возможность установления автора информации;
  • апеллируемость — возможность доказать что автором является именно заявленный человек, и не никто другой.

     "Общие  критерии" описывают 11 классов, 66 семейств и 135 компонентов функциональных  требований безопасности. Кроме  этого содержатся сведения о  том, каким образом могут быть  достигнуты цели безопасности при современном уровне информационных технологий.

     Классам присвоены следующие названия:

     1. FAU - аудит безопасности;

     2. FIA - идентификация/аутентификация;

     3. FRU - использование ресурсов;

     4. FCO - связь;

     5. FPR - приватность;

     6. FDP - защита данных пользователя;

     7. FPT - защита функций безопасности  объекта оценки;

     8. FCS - криптографическая поддержка;

     9. FMT - управление безопасностью;

     10. FTA - доступ к объекту оценки;

     11. FTP - доверенный маршрут/канал.

     Классы функциональных требований к элементарным сервисам безопасности

     К элементарным сервисам безопасности относятся  следующие классы FAU, FIA и FRU.

     Класс FAU включает шесть семейств (FAU_GEN, FAU_SEL, FAU_STG, FAU_SAR, FAU_SAA и FAU_ARP), причем каждое семейство  может содержать разное число компонентов.

     Назначение  компонент данного класса следующее.

     FAU_GEN - генерация данных аудита безопасности. Содержит два компонента FAU_GEN.1 (генерация  данных аудита) и FAU_GEN.2 (ассоциация  идентификатора пользователя).

 

Список литературы

  1. Гук М. Аппаратные средства IBM PC./Спб.,Питер,1999г
  2. Хорошилов А.В., Селетков С.Н. Мировые информационные ресурсы: Учебное пособие. – СПб: Питер, 2004
  3. Дубнов П.Ю. Access 2000. Про ектирование баз данных. Ecom 2000
  4. www.microinform.ru/ Учебный центр компьютерных технологий «Микроинформ»
  5. www.google.com/ Поисковая система “Google”
  6. www.yandex.ru/ Поисковая система “Yandex”
  7. www.gpntb.ru/ Государственная публичная научно-техническая библиотека.

Информация о работе Квантование сигнала