Автор работы: Пользователь скрыл имя, 19 Января 2012 в 23:34, курсовая работа
Задача: исследовать современные методы шифрования и их приложимость к шифрованию потоков данных. Разработать собственную библиотеку алгоритмов шифрования и программный продукт, демонстрирующий работу этих алгоритмов при передаче данных в сети.
Введение 3
1 Алгоритм RSA 8
1.1 Система шифрования RSA 10
1.2 Сложность теоретико-числовых алгоритмов 13
2 Качественная теория алгоритма RSA 21
2.1 Алгоритм, доказывающий непростоту числа 22
2.2 Нахождение больших простых чисел 24
2.3 Проверка большого числа на простоту 29
3 Практическая реализация алгоритма 35
3.1 Реализованные алгоритмы 35
3.2 Анализ результатов 36
Выводы и рекомендации 37
Библиографический список 38
Для этого можно случайным образом выбирать число , и проверять для него выполнимость соотношений
Если при выбранном эти соотношения выполняются, то, согласно следствию из теоремы 2, можно утверждать, что число простое. Если же эти условия нарушаются, нужно выбрать другое значение и повторять эти операции до тех пор, пока такое число не будет обнаружено.
Предположим, что построенное число действительно является простым. Зададимся вопросом, сколь долго придётся перебирать числа , пока не будет найдено такое, для которого будут выполнены условия (12). Заметим, что для простого числа первое условие (12), согласно малой теореме Ферма, будет выполняться всегда. Те же числа , для которых нарушается второе условие (12), удовлетворяют сравнению . Как известно, уравнение в поле вычетов имеет не более решений. Одно из них . Поэтому на промежутке имеется не более чисел, для которых не выполняются условия (12). Это означает, что, выбирая случайным образом числа на промежутке , при простом можно с вероятностью большей, чем , найти число , для которого будут выполнены условия теоремы 2, и тем доказать, что действительно является простым числом.
Заметим, что построенное таким способом простое число будет удовлетворять неравенству , т. е. будет записываться вдвое большим количеством цифр, чем исходное простое число . Заменив теперь число на найденное простое число и повторив с этим новым все указанные выше действия, можно построить еще большее простое число. Начав с какого-нибудь простого числа, скажем, записанного 10 десятичными цифрами (простоту его можно проверить, например, делением на маленькие табличные простые числа), и повторив указанную процедуру достаточное число раз, можно построить простые числа нужной величины.
Обсудим теперь некоторые теоретические вопросы, возникающие в связи с нахождением числа , удовлетворяющего неравенствам , и такого, что - простое число. Прежде всего, согласно теореме Дирихле, доказанной еще в 1839 г., прогрессия , содержит бесконечное количество простых чисел. Нас интересуют простые числа, лежащие недалеко от начала прогрессии. Опенка наименьшего простого числа в арифметической прогрессии была получена в 1944 г. Ю. В. Линником. Соответствующая теорема утверждает, что наименьшее простое число в арифметической прогрессии не превосходит , где - некоторая достаточно большая абсолютная постоянная.
Таким образом, в настоящее время никаких теоретических гарантий для существования простого числа не существует. Тем не менее, опыт вычислений на ЭВМ показывает, что простые числа в арифметической прогрессии встречаются достаточно близко к её началу. Упомянем в этой связи гипотезу о существовании бесконечного количества простых чисел с условием, что число также простое, т. е. простым является уже первый член прогрессии.
Очень важен в связи с описываемым методом построения простых чисел также вопрос о расстоянии между соседними простыми числами в арифметической прогрессии. Ведь убедившись, что при некотором число составное, можно следующее значение взять равным и действовать так далее, пока не будет найдено простое число . И если расстояние между соседними простыми числами в прогрессии велико, нет надежды быстро построить нужное число . Перебор чисел до того момента, как мы наткнемся на простое число окажется слишком долгим. В более простом вопросе о расстоянии между соседними простыми числами и в натуральном ряде доказано лишь, что , что, конечно, не очень хорошо для наших целей. Вместе с тем существует так называемая гипотеза Крамера (1936 г.), что , дающая вполне приемлемую опенку. Примерно такой же результат следует и из расширенной гипотезы Римана. Вычисления на ЭВМ показывают, что простые числа в арифметических прогрессиях расположены достаточно плотно.
В качестве итога обсуждения в этом пункте подчеркнём следующее: если принять на веру, что наименьшее простое число, а также расстояние между соседними простыми числами в прогрессии при оцениваются величиной , то описанная схема построения больших простых чисел имеет полиномиальную опенку сложности. Кроме того, несмотря на отсутствие теоретических опенок времени работы алгоритмов, отыскивающих простые числа в арифметических прогрессиях со сравнительно большой разностью, на практике эти алгоритмы работают вполне удовлетворительно. На обычном персональном компьютере без особых затрат времени строятся таким способом простые числа порядка .
Конечно, способ конструирования простых чисел для использования в схеме RSA должен быть массовым, а сами простые числа должны быть в каком-то смысле хорошо распределёнными. Это вносит ряд дополнительных осложнений в работу алгоритмов.
Наконец,
отметим, что существуют методы построения
больших простых чисел, использующие
не только простые делители
, но и делители чисел
. В основе их лежит использование последовательностей
целых чисел, удовлетворяющих линейным
рекуррентным уравнениям различных порядков.
Отметим, что последовательность
, члены которой присутствуют в формулировке
малой теоремы Ферма, составляет решение
рекуррентного уравнения первого порядка
.
2.3 Проверка большого числа на простоту
Есть
некоторое отличие в
В этом пункте мы предполагаем лишь, что нам задано некоторое число , например, выбранное случайным образом на каком-то промежутке, и требуется установить его простоту, или доказать, что оно является составным. Эту задачу за полиномиальное количество операций решает указанный в п. 3 алгоритм Миллера. Однако, справедливость полученного с его помощью утверждения зависит от недоказанной расширенной гипотезы Римана. Если число выдержало испытания алгоритмом 5 для 100 различных значений параметра , то, по-видимому, можно утверждать, что оно является простым с вероятностью большей, чем . Эта вероятность очень близка к единице, однако всё же оставляет некоторую тень сомнения на простоте числа . В дальнейшем в этом пункте мы будем считать, что заданное число является простым, а нам требуется лишь доказать это.
В настоящее время известны детерминированные алгоритмы различной сложности для доказательства простоты чисел. Мы остановимся подробнее на одном из них, предложенном в 1983 г. в совместной работе Адлемана. Померанца и Рамели. Для доказательства простоты или непростоты числа этот алгоритм требует арифметических операций. Здесь - некоторая положительная абсолютная постоянная. Функция хоть и медленно, но всё же возрастает с ростом , поэтому алгоритм не является полиномиальным. Но всё же его практические реализации позволяют достаточно быстро тестировать числа на простоту. Существенные усовершенствования и упрощения в первоначальный вариант алгоритма были внесены в работах X. Ленстры и А. Коена. Мы будем называть описываемый ниже алгоритм алгоритмом Адлемана - Ленстры.
В основе алгоритма лежит использование сравнений типа малой теоремы Ферма, но в кольцах целых чисел круговых полей, т. е. полей. порождённых над полем числами - корнями из 1. Пусть - простое нечётное число и — первообразный корень по модулю , т. е. образующий элемент мультипликативной группы поля , которая пиклична. Для каждого целого числа , не делящегося на , можно определить его индекс, , называемый также дискретным логарифмом, с помощью сравнения . Рассмотрим далее два простых числа , с условием, что делится на , но не делится на .
Следующая функция, определённая на множестве целых чисел.
является характером по модулю и порядок этого характера равен .
Сумма
называется суммой Гаусса. Формулируемая ниже теорема 3 представляет собой аналог малой теоремы Ферма, используемый в алгоритме Адлемана - Ленстры.
Теорема 3. Пусть - нечетное простое число, . Тогда в кольце выполняется сравнение
Если при каких-либо числах сравнение из теоремы 3 нарушается. можно утверждать, что составное число. В противном случае, если сравнение выполняется, оно даёт некоторую информацию о возможных простых делителях числа . Собрав такую информацию для различных , в конце концов, удаётся установить, что имеет лишь один простой делитель и является простым.
В случае легко проверить, что сравнение из теоремы 3 равносильно хорошо известному в элементарной теории чисел сравнению
где - так называемый символ Якоби. Хорошо известно также, что последнее сравнение выполняется не только для простых , но и для любых целых , взаимно простых с . Заметим также, что для вычисления символа Якоби существует быстрый алгоритм, основанный на законе взаимности Гаусса и. в некотором смысле, подобный алгоритму Евклида вычисления наибольшего общего делителя. Следующий пример показывает. каким образом выполнимость нескольких сравнений типа (13) даёт некоторую информацию о возможных простых делителях числа .
Пример (X. Ленстра). Пусть — натуральное число, . для которого выполнены сравнения
а кроме того с некоторым целым числом имеем
Как уже указывалось, при простом сравнения (14) выполняются для любого , взаимно простого с , а сравнение (15) означает, что есть первообразный корень по модулю . Количество первообразных корней равно , т. е. достаточно велико. Таким образом, число с условием (15) при простом может быть найдено достаточно быстро с помощью случайного выбора и последующей проверки (15).
Докажем, что из выполнимости (14-15) следует, что каждый делитель числа удовлетворяет одному из сравнений
Не уменьшая общности, можно считать, что - простое число. Введем теперь обозначения , где и - нечётные числа. Из (15) и сравнения следует, что . Далее, согласно (14). выполняются следующие сравнения
означающие (в силу того, что символ Якоби может равняться лишь -1 или +1), что
При это равенство означает, что при , и, следовательно, . Если же , то имеем и . Этим (16) доказано.
Информация такого рода получается и в случае произвольных простых чисел и с указанными выше свойствами.
Опишем схему алгоритма Адлемана - Ленстры для проверки простоты :
1 выбираются различные простые числа и различные простые нечётные такие, что
1) для
каждого
все простые делители числа
содержатся
среди
и
не делятся на квадрат простого числа;
1) .
4)
проверяется, содержит ли найденное множество
делители
. Если при этом делители не обнаружены,
утверждается, что
- простое
число.
Если число составное, оно обязательно имеет простой делитель , меньший , который сам содержится среди возможных остатков. Именно на этом свойстве основано применение пункта 4) алгоритма.
Сумма Якоби
Информация о работе Криптосистемы с открытым ключом. Алгоритм шифрования RSA