Автор работы: Пользователь скрыл имя, 22 Марта 2012 в 17:09, контрольная работа
Компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.
По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).
Платформы рабочих станций предоставляют большую гибкость в модернизации. Большее количество слотов PCI и PCI-E дает возможность установки профильных плат расширения. Большее количество слотов памяти и возможность установки второго процессора в двухпроцессорных системах увеличивает диапазон выбора производительности.
Конечно, вышеприведенная классификация весьма условна, ибо мощный современный персональный компьютер, оснащенные проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательная микроЭВМ, и как хороший сервер, но по своим характеристикам почти не уступающий малым ЭВМ.
Существуют два взгляда на построение и функционирование ЭВМ. Первый - взгляд пользователя, не интересующегося технической реализацией ЭВМ и озабоченного только получением некоторого набора функций и услуг, обеспечивающих эффективное решение его задач; второй - разработчика ЭВМ, усилия которого направлены на рациональную техническую реализацию необходимых пользователю функций. С учетом этого обстоятельства и вводятся понятия "функциональная и структурная организация" компьютера.
Функциональная организация ЭВМ - это абстрактная модель ЭВМ, описывающая функциональные возможности машины и предоставляемые ею услуги. Функциональная организация ЭВМ в значительной степени определяется предъявляемыми к ней требованиями, уровнем подготовки потенциальных пользователей, типом решаемых ими задач, потребностями в развитии компьютера (по емкости ЗУ, разрядности, составу периферийных устройств и др.).
Предусматриваемые абстрактной моделью функции ЭВМ реализуются на основе реальных, физических средств (устройств, блоков, узлов, элементов) в рамках определенной структуры. В общем случае под структурной организацией ЭВМ понимается некоторая физическая модель, устанавливающая состав, порядок и принципы взаимодействия основных функциональных частей машины (без излишних деталей их технической реализации).
По степени детальности различают структурные схемы, составленные на уровне
¨ устройств,
¨ блоков,
¨ узлов,
¨ элементов.
Устройство - наиболее крупная функциональная часть ЭВМ, состоящая из элементов, узлов, блоков и выполняющая глобальные операции над кодированными данными (запоминание, обработку, преобразование).
Блок - функциональный компонент ЭВМ, состоящий из элементов и узлов и выполняющий операции над машинными словами или управляющий такими операциями (пример: сумматор, блок регистров).
Узел - часть машины, состоящая из нескольких более простых элементов и представляющая собой сборочную единицу (логическая схема).
Элемент, простейшее устройство ЭВМ, выполняющее одну операцию над входными сигналами. (пример — логический элемент).
Блоки и устройства часто изготавливаются в виде самостоятельных конструктивных модулей.
Функциональная организация ЭВМ играет ведущую роль и в значительной степени определяет структурную организацию машины, хотя и не дает жестких ограничений на конечную техническую реализацию структурных элементов. Одна и та же функция может быть реализована на совершенно разных технических средствах.
Вопрос № 6
Принципы работы ЭВМ: Современные ЭВМ построены в соответствии с принципами, сформулированными фон Нейманом в 1945 г.:
1. Принцип программного управления: ЭВМ работает по программе, которая находится в оперативной памяти и выполняется автоматически; программы дискретны и представляют собой последовательность команд, каждая из которых осуществляет отдельный акт преобразования информации; все разновидности команд образуют систему команд машины.
2. Принцип условного перехода: При выполнении программы возможен переход к той или иной команде в зависимости от промежуточных результатов вычислений; это допускает создание циклов.
3. Принцип хранимой информации: Команды как и операнды представляются в машинном коде и хранятся в оперативной памяти. При работе команды обрабатываются устройством управления процессора, а операнды -- арифметико-логическим устройством.
4. Принцип использования двоичной системы счисления: Информация кодируется в двоичной форме и разделяется на элементы, называемыми словами. В двоичной системе используются две цифры 0 и 1, что соответствует двум состояниям двустабильной системы (кнопка нажата-отпущена, транзистор открыт-закрыт, ...)
5. Принцип иерархичности ЗУ: Компромисом между необходимыми большой емкостью памяти, быстрым доступом к данным, дешевизной и надежностью является иерархия запоминающих устройств: 1) быстродействующее ОЗУ, имеющее небольшую емкость для операндов и команд, участвующих в вычислениях; 2) инерционное ВЗУ, имеющее большую емкость для информации, не участвующей в данный момент в работе ЭВМ.
Вопрос № 7
К четвёртому поколению относятся все компьютеры, производящиеся сегодня. Самые распространённые из них — это настольные компьютеры, построенные по фон-неймановской архитектуре, также известной как архитектура IBM PC.
Вопрос № 8
Калькулятор
Вопрос № 9
Холодильник, стиральная и посудомоечная машины, микроволновая печь и т. д.
Вопрс № 10
1. Микропроцессор
2. Основная (материнская) плата и шина
3. Память
4. Накопители на подвижном магнитном носителе
5. Накопители на гибких магнитных дисках
6. Оптические диски
7. Блоки расширения
Вопрос №11
Основные составные части ПК
Вопрос №12
Достоинства принципа открытой архитектуры
главное достоинство — простота, возможность легко изменять конфигурацию компьютера путем добавления новых или замены старых устройств.
Вопрос №13
Какое программное обеспечение требуется для ПК
Под программным обеспечением понимается совокупность программ, выполняемых вычислительной системой.
К программному обеспечению относится также вся область деятельности по проектированию и разработке ПО.
- Технология проектирования программ;
- Методы тестирования программ;
- Методы доказательства правильности программ;
Вопрос №14
В чем разница между системными и прикладными программами
Прикладные программы предназначены для выполнения какой-либо определенной задачи, в то время как системные программы используются для поддержания работы системы. Текстовый процессор является прикладной программой, а программа telnet - системной, хотя зачастую граница между ними довольно смутная.
Вопрос №15
Что такое интерфейс?
Интерфейс (Interface) - совокупность средств и правил обеспечивающих взаимодействие устройств вычислительной системы и программ, а также взаимодействие их с человеком.
интерфейс (Interface) - 1) Интерфейс - форма для общения между средствами ввода и программными средствами машины; 2) Интерфейс - разъём для соединения двух устройств.
Интерфейс (Interface) - средство общения одной системы с другой.
Вопрос №16
Для чего нужны драйвера подключаемых к ПК устройств?
Дра́йвер (от англ. driver) — компьютерная программа, с помощью которой операционная система (например Windows) получает доступ к аппаратному обеспечению некоторого устройства и имеет тем самым возможность управлять им.
Драйвер можно рассматривать как программу-посредник, которая позволяет "общаться" вашему компьютеру с каким-либо устройством. Для простоты восприятия драйвер можно даже сравнить с переводчиком, который помогает общаться людям, говорящим на разных языках. Только в нашем случае собеседники это компьютер и устройство.
Для каждого устройства любого компьютера необходим свой драйвер, который позволяет операционной системе управлять этим устройством. Обычно операционные системы (например Windows) уже имеют в своем составе определенный набор драйверов, которые необходимы для базовой комплектации компьютера.
К большинству устройств производители пишут свои драйвера и прилагают к устройству на диске. Например, когда вы покупаете принтер, в коробке с ним обязательно должен быть хотябы один (иногда несколько) диск, содержащий драйвер принтера, инструкцию по эксплуатации и иногда сопроводительное программное обеспечение.
Вопрос №17
Что такое носители информации?
Носителем информации может быть любой объект, на котором можно оставить следы или знаки. Носители информации предназначены для ее хранения и передачи.
Определение:Носитель информации - это любой материальный объект, используемый для закрепления и хранения на нем информации.
Вопрос №18
Какие существуют единицы для оценки количества информации?
понятие информации можно рассматривать при различных ограничениях, накладываемых на ее свойства, т. е. при различных уровнях рассмотрения. В основном выделяют три уровня – синтаксический, семантический и прагматический. Соответственно на каждом из них для определения количества информации применяют различные оценки.
На синтаксическом уровне для оценки количества информации используют вероятностные методы, которые принимают во внимание только вероятностные свойства информации и не учитывают другие (смысловое содержание, полезность, актуальность и т. д.). Разработанные в середине XX в. математические и, в частности, вероятностные методы позволили сформировать подход к оценке количества информации как к мере уменьшения неопределенности знаний. Такой подход, называемый также вероятностным, постулирует принцип: если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно утверждать, что такое сообщение содержит информацию. При этом сообщения содержат информацию о каких-либо событиях, которые могут реализоваться с различными вероятностями. Формулу для определения количества информации для событий с различными вероятностями и получаемых от дискретного источника информации предложил американский ученый К. Шеннон в 1948 г. Согласно этой формуле количество информации может быть определено следующим образом:
где I – количество информации; N – количество возможных событий (сообщений); pi – вероятность отдельных событий (сообщений); Σ – математический знак суммы чисел.
Определяемое с помощью формулы (1.1) количество информации принимает только положительное значение. Поскольку вероятность отдельных событий меньше единицы, то соответственно выражение log^,– является отрицательной величиной и для получения положительного значения количества информации в формуле (1.1) перед знаком суммы стоит знак минус.
Если вероятность появления отдельных событий одинаковая и они образуют полную группу событий, т. е.то формула (1.1) преобразуется в формулу Р. Хартли:
В формулах (1.1) и (1.2) отношение между количеством информации и соответственно вероятностью, или количеством, отдельных событий выражается с помощью логарифма. Применение логарифмов в формулах (1.1) и (1.2) можно объяснить следующим образом. Для простоты рассуждений воспользуемся соотношением (1.2). Будем последовательно присваивать аргументу N значения, выбираемые, например, из ряда чисел: 1, 2, 4, 8, 16, 32, 64 и т. д. Чтобы определить, какое событие из N равновероятных событий произошло, для каждого числа ряда необходимо последовательно производить операции выбора из двух возможных событий. Так, при N = 1 количество операций будет равно 0 (вероятность события равна 1), при N = 2, количество операций будет равно 1, при N = 4 количество операций будет равно 2, при N = 8, количество операций будет равно 3 и т. д. Таким образом получим следующий ряд чисел: 0, 1, 2, 3, 4, 5, 6 и т. д., который можно считать соответствующим значениям функции I в соотношении (1.2). Последовательность значений чисел, которые принимает аргумент N, представляет собой ряд, известный в математике как ряд чисел, образующих геометрическую прогрессию, а последовательность значений чисел, которые принимает функция I, будет являться рядом, образующим арифметическую прогрессию. Таким образом, логарифм в формулах (1.1) и (1.2) устанавливает соотношение между рядами, представляющими геометрическую и арифметическую прогрессии, что достаточно хорошо известно в математике.