Экспертные системы

Автор работы: Пользователь скрыл имя, 26 Апреля 2012 в 13:33, дипломная работа

Краткое описание

Экспертные системы (ЭС)- это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. Они возникли как значительный практический результат в применении и развитии методов искусственного интеллекта (ИИ)- совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.

Содержание работы

Введение
1. Экспертные системы, их особенности
1.2. Применение экспертных систем
1.3. Структура экспертной системы
1.4. Архитектура экспертной системы реального времени
2. История развития экспертных систем
2.1. Основные линии развития экспертных систем
2.2. Проблемы, возникающие при создании экспертных систем
3. Модели представления знаний
3.1 Логическая модель представления знаний
3.2 Продукционная модель представления знаний
3.3 Представление знаний фреймами
3.4 Представление знаний семантическими сетями
Заключение
Список литературы

Содержимое работы - 1 файл

Экспертные системы.doc

— 151.00 Кб (Скачать файл)

     Вторая  и основная трудность - проблема приобретения (усвоения) знаний. Эта проблема возникает при “передаче” знаний, которыми обладают эксперты-люди, ЭС. Большинство экспертов (за исключением, может быть, математиков), успешно используя в повседневной деятельности свои обширные знания, испытывают большие затруднения при попытке сформулировать и представить в системном виде хотя бы основную часть этих знаний: иерархию используемых понятий, эвристики, алгоритмы, связи между ними. Оказывается, что для подобной формализации знаний необходим определенный систематический стиль мышления, более близкий математикам и программистам, чем, например, юристам и медикам. Кроме того, необходимы, с одной стороны, знания в области математической логики и методов представления знаний, с другой - знания возможности ЭВМ, из программного обеспечения, в частности, языков и систем программирования.

     Таким образом, выясняется, что для разработки ЭС необходимо участие в ней особого рода специалистов, обладающих указанной совокупностью знаний и выполняющих функции “посредников” между экспертами в предметной области и компьютерными (экспертными) системами. Они получили название инженеры знаний (в оригинале - knowledge engineers), а сам процесс разработки ЭС и других интеллектуальных программ, основанных на представлении и обработке знаний - инженерией знаний (knowledge engineering).

     На  этапе приобретения знаний могут  возникнуть трудности и психологического порядка: эксперт может препятствовать передаче своих знаний ЭС, полагая, что это снизит его престиж как специалиста и создаст предпосылки для замены его “машиной”. Однако эти опасения лишены оснований: ЭС “уверенно” работает лишь в типовых ситуациях, а также удобна в случаях, когда человек находится в состоянии стресса, в наиболее сложных ситуациях, требующих нестандартных рассуждений и оценок, эксперт- человек незаменим.

     Третья  серьезная трудность- в очень  большой трудоемкости создания ЭС : требуется разработать средства управления базой знаний, логического вывода, диалогового взаимодействия с пользователем и т.д. Объем программирования столь велик, а программы столь сложны и нетрадиционны, что имеет смысл, как это принято сейчас при разработке больших программ, на первом этапе создать демонстрационный прототип системы - предварительный вариант, в котором в упрощенном виде реализованы лишь ее основные планируемые возможности и которая будет служить для заказчика подтверждением того, что разработка ЭС для решения данной задачи принципиально возможна, а для разработчиков- основой для последующего улучшения и развития системы.

     3. Модели представления  знаний

     Одной из наиболее важных проблем, характерных  для систем, основанных на знаниях, является проблема представления знаний. Это объясняется тем, что форма представления знаний оказывает существенное влияние на характеристики и свойства системы. Для того чтобы манипулировать всевозможными знаниями из реального мира с помощью компьютера, необходимо осуществлять их моделирование. В таких случаях необходимо отличать знания, предназначенные для обработки компьютером, от знаний, используемых человеком. Кроме того, при большом объеме знаний желательно упростить последовательное управление отдельными элементами знаний.

     При проектировании модели представления  знаний следует учитывать такие факторы, как однородность представления и простота понимания. Однородное представление приводит к упрощению механизма управления логическим выводом и упрощению управления знаниями. Представление знаний должно быть понятным экспертам и пользователям системы. В противном случае затрудняются приобретение знаний и их оценка. Однако выполнить это требование в равной степени, как для простых, так и для сложных задач довольно трудно. Обычно для несложных задач останавливаются на некотором среднем (компромиссном) представлении, но для решения сложных и больших задач необходимы структурирование и модульное представление5.

     Типичными моделями представления знаний являются:

  1. Логическая модель;
  2. Модель, основанная на использовании правил (продукционная модель);
  3. Модель, основанная на использовании фреймов;
  4. Модель семантической сети.

     Однако  во всех разработанных в прошлом  системах с базами знаний помимо этих моделей использовались специальные  для конкретного случая средства, поэтому представление знаний получалось сложным. Тем не менее классификация моделей оставалась неизменной. Язык, используемый для разработки систем, спроектированных на основе этих моделей, называется языком представления знаний.

     3.1 Логическая модель  представления знаний

     Логическая  модель используется для представления знаний в системе логики предикатов первого порядка и выведения заключений с помощью силлогизма. Основное преимущество использования логики предикатов для представления знаний заключается в том, что обладающий хорошо понятными математическими свойствами мощный механизм вывода может быть непосредственно запрограммирован. С помощью этих программ из известных ранее знаний могут быть получены новые знания.

     Отличительными  чертами логических моделей, в частности  приведенных выше моделей представления знаний, являются единственность теоретического обоснования и возможность реализации системы формально точных определений и выводов. По этим причинам немало исследователей в области искусственного интеллекта выбрали для себя предметом изучения именно логические модели. Однако для логических моделей характерен ряд сомнительных моментов, а поскольку большинство исследователей в области искусственного интеллекта – люди с неформальным мышлением, то большая часть достижений в области систем с базами знаний до недавнего времени принадлежала  так называемой группе исследователей нелогического направления. В отличие от исследователей логического направления, которые выбирают предметом своих исследований сравнительно простые задачи, для решения которых используются теоретические подходы, исследователи нелогического направления выбирают сложные задачи и пытаются сконцентрировать все внимание на развитии способностей. Кроме того, в отличие от первой категории исследователей, которые почти не занимаются теоретическими исследованиями, вторая категория придает им большое значение. Другими словами, так называемая “человеческая логика” – это интеллектуальная модель с нечеткой структурой – в этом ее отличие от строгой логики. Более точно следует сказать, что исследователи логического направления ищут пути логического решения (в малой модели) задач, поставленных исследователями нелогического направления, и постепенно расширяют рамки логики. Примерами тому являются модальная логика, многозначная логика и т.п. В 80-х гг. было пересмотрено отношение к преимуществам и значимости логических методов, и они в различных формах стали применяться в нелогических моделях представления знаний. Это обусловлено, с одной стороны, необходимостью в точном представлении знаний, а с другой – ставшими очевидными пределами традиционных систем знаний, чрезмерно тяготеющих к эвристике.

     3.2 Продукционная модель представления знаний

     В модели правил знания  представлены совокупностью правил вида “ЕСЛИ  – ТО”. Системы с базами знаний, основанные на этой модели, называются продукционными системами. Эти системы бывают двух диаметрально противоположных типов – с прямыми и обратными выводами. Типичным представителем первого типа является система MYCIN, используемая для решения задач диагностического характера, а типичным представителем систем второго типа – OPS, используемая для решения проектирования задач.

     В системе продукций с обратными  выводами с помощью правил строится дерево И/ИЛИ, связывающее в единое целое факты и заключения; оценка этого дерева на основании фактов, имеющихся в базе данных, и есть логический вывод. Логические выводы бывают прямыми, обратными и двунаправленными. При прямом выводе отправной точкой служат предоставленные данные, процесс оценки приостанавливается в узлах с отрицанием, причем в качестве заключения (если не все дерево пройдено) используется гипотеза, соответствующая самому верхнему уровню дерева (корню). Однако для такого вывода характерно большое количество данных, а также оценок дерева, не имеющих прямого отношения к заключению, что излишне. Преимущество обратных выводов в том, что оцениваются только те части дерева, которые имеют отношение к заключению, однако если отрицание или утверждение невозможны, то порождение дерева лишено смысла. В двунаправленных выводах сначала оценивается небольшой объем полученных данных и выбирается гипотеза (по примеру прямых выводов), а затем запрашиваются данные, необходимые для принятия решения о пригодности данной гипотезы. На основе этих выводов можно реализовать более мощную и гибкую систему.

     Системы продукций с прямыми выводами среди систем, основанных на использовании  знаний, имеют наиболее давнюю историю, поэтому они являются в некотором смысле основополагающими. Эти системы включают три компонента: базу правил, состоящую из набора продукций (правил вывода), базу данных, содержащую множество фактов, и интерпретатор для получения логического вывода на основании этих знаний. База правил и база данных образуют базу знаний, а интерпретатор соответствует механизму логического вывода. Вывод выполняется в виде цикла “понимание – выполнение”, причем в каждом цикле выполняемая часть выбранного правила обновляет базу данных. В результате содержимое базы данных преобразуется от первоначального к целевому, т.е. целевая система синтезируется в базе данных. Иначе говоря, для системы продукций характерен простой цикл выбора и выполнения (или оценки) правил, однако из-за необходимости периодического сопоставления с образцом в базе правил (отождествлением) с увеличением числа последних (правил) существенно замедляется скорость вывода. Следовательно, такие системы не годятся для решения крупномасштабных задач. Упорядочим слабые и сильные стороны хорошо известных  систем продукций. Сильные стороны:

  1. Простота создания и понимания, отдельных правил;
  2. Простота пополнения, модификации и аннулирования;
  3. Простота механизма логического вывода.

     Слабые  стороны:

  1. Неясность взаимных отношений правил;
  2. Сложность оценки целостного образа знаний;
  3. Крайне низкая эффективность обработки;
  4. Отличие от человеческой структуры знаний;
  5. Отсутствие гибкости в логическом выводе.

     Таким образом, если объектом является небольшая  задача, выявляются только сильные стороны системы продукций. В случаях увеличения объема знаний, необходимости решения сложных задач, выполнения гибких выводов или повышения скорости вывода требуется структурирование базы данных. Первое, что приходит в голову в таких случаях, - это группировка знаний и структурирование базы данных. Другими словами, путем предварительной группировки соответствующих правил в некотором состоянии процесса вывода можно ограничить диапазон выбора правил. В тех случаях, когда объекты, для которых используются правила, также имеют иерархическую структуру, эффективным является структурирование базы данных. Этот подход был реализован в системах EMICIN и MECS-AI, разработанных на базе системы MYCIN с применением универсального языка представления знаний.

     Расширенным вариантом модели правил является модель доски объявлений (blackboard), которая была предложена в системе распознавания разговорной  речи HEARSAY-II как модель представления знаний.

     3.3 Представление знаний  фреймами

     Фреймовая модель, или модель представления  знаний, основанная на фреймовой теории М. Минского,  представляет собой систематизированную модель памяти человека и его сознания.

     Теория  фреймов - это парадигма для представления знаний с целью использования этих знаний компьютером. Впервые была представлена Минским в 1975 году, как попытка построить фреймовую сеть, или парадигму с целью достижения большего эффекта понимания. С одной стороны он пытался сконструировать базу данных, содержащую энциклопедические знания, но с другой стороны,  хотел создать наиболее описывающую базу, содержащую информацию в структурированной и упорядоченной форме. Эта структура позволила бы компьютеру вводить информацию в более гибкой форме, имея доступ к тому разделу, который требуется в данный момент. Минский разработал такую схему, в которой информация содержится в специальных ячейках, называемых фреймами, объединенными в сеть, называемую системой фреймов. Новый фрейм активизируется с наступлением новой ситуации. Отличительной его чертой является то, что он одновременно содержит большой объем знаний и в то же время является достаточно гибким для того, чтобы быть использованным как отдельный элемент базы данных. Термин «фрейм» был наиболее популярен в середине семидесятых годов, когда существовало много его толкований, отличных от интерпретации Минского.

     Итак, как было сказано выше фреймы –  это фрагменты знания, предназначенные для представления стандартных ситуаций. Термин «фрейм» (Frame – рамка) был предложен Минским. Фреймы имеют вид структурированных компонентов ситуаций, называемых слотами. Слот может указывать на другой фрейм, устанавливая, таким образом, связь между двумя фреймами. Могут устанавливаться общие связи типа связи по общению. С каждым фреймом ассоциируется разнообразная информация (в том числе и процедуры), например ожидаемые процедуры ситуации, способы получения информации о слотах, значение принимаемые по умолчанию, правила вывода.

     Формальная  структура фрейма имеет вид:

     f[<N1, V1>, <N2, V2>, …, <Nk, Vk>],

     где f – имя фрейма; пара <Ni, Vi> - i-ый слот, Ni – имя слота и Vi – его значение.

     Значение  слота может быть представлено последовательностью

Информация о работе Экспертные системы