Автор работы: Пользователь скрыл имя, 17 Ноября 2011 в 22:53, реферат
Ядро микросхемы динамической памяти состоит из множества ячеек, каждая из которых хранит всего один бит информации.
Введение
Немного теории. Устройство и принципы функционирования
Эволюция динамической памяти
SDRAM (Synchronous DRAM) - синхронная DRAM
DDR/DDR2 SDRAM: Отличия от SDR SDRAM
DDR3
DDR4
Заключение
Литература
Рисунок
3. Устройство ячейки динамической памяти.
Ввиду несоответствия интерфейсов памяти и процессора, для совместного взаимодействия им необходим посредник - контроллер памяти. Контроллер памяти в значительной мере определяет скорость обмена с памятью а, значит, и быстродействие всей системы в целом.
В настоящее время, такие контролеры выпускаются не в виде отдельных микросхем, а входят в состав чипсета (см. рис. 4).
Прежде всего - синхронный или асинхронный режим работы. Синхронные чипсеты требуют, чтобы частота памяти совпадала с частой шины. Имея такой чипсет, вы не сможете использовать преимущества процессора с 133 MHz шиной, если у вас установлена память SDRAM PC 100. Асинхронные чипсета выгодно отличаются тем, что позволяют тактировать память "своей" частотой, не обязательно совпадающей с тактовой частотой системной шины. Благодаря этому, они поддерживают практически любые комбинации процессоров и памяти. Согласитесь, - немаловажно для апгрейда. Однако если тактовые частоты системной шины и памяти не могут быть соотнесены как целые числа, возникают штрафные задержки (рис. 5), негативно сказывающиеся на производительности.
Другой немаловажный момент - политика открытия страниц и максимально возможное количество одновременно открываемых страниц. Как уже было показано выше, удерживание сигнала RAS позволяет читать ячейки в пределах этой страницы передачей одного лишь адреса столбца, что значительно увеличивает производительность системы. Чем больше страниц удерживается в открытом состоянии, тем выше вероятность того, что очередной запрос попадет в уже открытую страницу и потому обработается значительно быстрее.
Рисунок 4. Контроллер памяти в современных системах интегрирован в чипсет.
Рисунок
5. Если тактовая частота памяти и тактовая
частота системной шины не могут быть
соотнесены как целые числа возникают
штрафные задержки на их синхронизацию.
В микросхемах памяти, выпускаемых вплоть до середины девяностых, все три задержки (RAS to CAS Delay, CAS Delay и RAS precharge) в сумме составляли порядка 200 нс., что соответствовало двум тактам в 10 мегагерцовой системе и, соответственно, двенадцати - в 60 мегагерцовой. С появлением Intel Pentium 60 и Intel 486DX4 100 возникла потребность в совершенствовании динамической памяти - прежнее быстродействие уже никого не устраивало.
Первой ласточкой стала FPM-DRAM - Fast-Page Mode DRAM (Память быстрого страничного режима), разработанная в 1995 году. Основным отличием от памяти предыдущего поколения стала поддержка сокращенных адресов. Если очередная запрашиваемая ячейка находится в той же самой строке, что и предыдущая, ее адрес однозначно определяется одним лишь номером столбца и передача номера строки уже не требуется.
При
последовательном чтении ячеек памяти,
(равно как и обработке
Между тем тактовые частоты микропроцессоров не стояли на месте, а стремительно росли, вплотную приближаясь к рубежу в 200 МГц. Рынок требовал качественного нового решения, а не изнуряющей борьбы за каждую наносекунду. Инженеров вновь отправили к чертежным доскам, где (году эдак в 1996) их осенила очередная идея. Если оснастить микросхему специальным триггером-защелкой, удерживающим линии данных после исчезновения сигнала CAS, станет возможным дезактивировать CAS до окончания чтения данных, подготавливая в это время микросхему к приему номера следующего столбца. Так появилась EDO-DRAM (Extended Data Out) – память с усовершенствованным выходом.
Совершенствование производственных технологий сократило и полное время доступа. На частоте 66 МГц формула лучших EDO-микросхем выглядела так: 5-2-x-x. Простой расчет позволяет установить, что пиковый прирост производительности (в сравнении с FPM-DRAM) составляет около 30%, однако, во многих компьютерных журналах тех лет фигурировала совершенно немыслимая цифра 50%, - якобы настолько увеличивалась скорость компьютера при переходе с FPM на EDO. Это могло быть лишь при сравнении худшей FMP-DRAM с самой "крутой" EDO-памятью, т.е. фактически сравнивались не технологии, а старые и новые микросхемы.
Двукратное увеличение производительности было достигнуто лишь в BEDO-DRAM (Burst EDO). Добавив в микросхему генератор номера столбца, конструкторы ликвидировали задержку CAS Delay, сократив время цикла до 15 нс. После обращения к произвольной ячейке микросхема BEDO автоматически, без указаний со стороны контроллера, увеличивает номер столбца на единицу, не требуя его явной передачи. По причине ограниченной разрядности адресного счетчика (конструкторы отвели под него всего лишь два бита) максимальная длина пакета не могла превышать четырех ячеек (22=4).
Действительно, пусть время рабочего цикла составляет 15 нс. (1 такт в 66 MHz системе). Однако, поскольку "часы" контроллера памяти и самой микросхемы памяти не синхронизованы, нет никаких гарантий, что начало рабочего цикла микросхемы памяти совпадет с началом такового импульса контроллера, вследствие чего минимальное время ожидания составляет два такта. Вернее, если быть совсем точным, рабочий цикл микросхемы памяти никогда не совпадает с началом тактового импульса. Несколько наносекунд уходит на формирование контроллером управляющего сигнала RAS или CAS, за счет чего он уже не совпадет с началом тактирующего импульса. Еще несколько наносекунд требуется для стабилизации сигнала и "осмысления" его микросхемой, причем, сколько именно времени потребуется заранее определить невозможно, т.к. на результат влияет и температура, и длина проводников, и помехи на линии, и еще много факторов.
Рассмотрим
модули памяти, начиная с конца
XX века – начала XXI века.
3.1.
SDRAM (Synchronous DRAM) - синхронная DRAM.
Аббревиатура SDRAM расшифровывается как Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом.
Под «синхронностью» обычно понимается строгая привязка управляющих сигналов и временных диаграмм функционирования памяти к частоте системной шины. Вообще говоря, в настоящее время изначальный смысл понятия синхронности становится несколько условным. Во-первых, частота шины памяти может отличаться от частоты системной шины (в качестве примера можно привести уже сравнительно давно существующий «асинхронный» режим работы памяти DDR SDRAM на платформах AMD K7 с чипсетами VIA KT333/400, в которых частоты системной шины процессора и шины памяти могут соотноситься как 133/166 или 166/200 МГц). Во-вторых, ныне существуют системы, в которых само понятие «системной шины» становится условным — речь идет о платформах класса AMD Athlon 64 с интегрированным в процессор контроллером памяти. Частота «системной шины» (под которой в данном случае понимается не шина HyperTransport для обмена данными с периферией, а непосредственно «шина» тактового генератора) в этих платформах является лишь опорной частотой, которую процессор умножает на заданный коэффициент для получения собственной частоты. При этом контроллер памяти всегда функционирует на той же частоте, что и сам процессор, а частота шины памяти задается целым делителем, который может не совпадать с первоначальным коэффициентом умножения частоты «системной шины». Так, например, режиму DDR-333 на процессоре AMD Athlon 64 3200+ будут соответствовать множитель частоты «системной шины» 10 (частота процессора и контроллера памяти 2000 МГц) и делитель частоты памяти 12 (частота шины памяти 166.7 МГц). Таким образом, под «синхронной» операцией SDRAM в настоящее время следует понимать строгую привязку временных интервалов отправки команд и данных по соответствующим интерфейсам устройства памяти к частоте шины памяти (проще говоря, все операции в ОЗУ совершаются строго по фронту/срезу синхросигнала интерфейса памяти). Так, отправка команд и чтение/запись данных может осуществляться на каждом такте шины памяти (по положительному перепаду — «фронту» синхросигнала; в случае памяти DDR/DDR2 передача данных происходит как по «фронту», так и по отрицательному перепаду — «срезу» синхросигнала), но не по произвольным временным интервалам (как это осуществлялось в асинхронной DRAM).
Понятие «динамической» памяти, DRAM, относится ко всем типам оперативной памяти, начиная с самой древней, «обычной» асинхронной динамической памяти и заканчивая современной DDR2. Этот термин вводится в противоположность понятия «статической» памяти (SRAM) и означает, что содержимое каждой ячейки памяти периодически необходимо обновлять (ввиду особенности ее конструкции, продиктованной экономическими соображениями). В то же время, статическая память, характеризующаяся более сложной и более дорогой конструкцией ячейки и применяемая в качестве кэш-памяти в процессорах (а ранее — и на материнских платах), свободна от циклов регенерации, т.к. в ее основе лежит не емкость (динамическая составляющая), а триггер (статическая составляющая).
По большей части они оказываются похожими на микросхемы SDR SDRAM — так, оба типа микросхем, как правило, имеют одинаковую логическую организацию (при одинаковой емкости), включая 4-банковую организацию массива памяти, и одинаковый командно-адресный интерфейс. Фундаментальные различия между SDR и DDR лежат в организации логического слоя интерфейса данных. По интерфейсу данных памяти типа SDR SDRAM данные передаются только по положительному перепаду («фронту») синхросигнала. При этом внутренняя частота функционирования микросхем SDRAM совпадает с частотой внешней шины данных, а ширина внутренней шины данных SDR SDRAM (от непосредственно ячеек до буферов ввода-вывода) совпадает с шириной внешней шины данных. В то же время, по интерфейсу данных памяти типа DDR (а также DDR2) данные передаются дважды за один такт шины данных — как по положительному перепаду синхросигнала («фронту»), так и по отрицательному («срезу»).
Возникает вопрос — как можно организовать удвоенную скорость передачи данных по отношению к частоте шины памяти? Напрашиваются два решения — можно либо увеличить в 2 раза внутреннюю частоту функционирования микросхем памяти (по сравнению с частотой внешней шины), либо увеличить в 2 раза внутреннюю ширину шины данных (по сравнению с шириной внешней шины). Достаточно наивно было бы полагать, что в реализации стандарта DDR было применено первое решение, но и ошибиться в эту сторону довольно легко, учитывая «чисто маркетинговый» подход к маркировке модулей памяти типа DDR, якобы функционирующих на удвоенной частоте (так, модули памяти DDR с реальной частотой шины 200 МГц именуются «DDR-400»). Тем не менее, гораздо более простым и эффективным — исходя как из технологических, так и экономических соображений — является второе решение, которое и применяется в устройствах типа DDR SDRAM. Такая архитектура, применяемая в DDR SDRAM, называется архитектурой «2n-предвыборки» (2n-prefetch). В этой архитектуре доступ к данным осуществляется «попарно» — каждая одиночная команда чтения данных приводит к отправке по внешней шине данных двух элементов (разрядность которых, как и в SDR SDRAM, равна разрядности внешней шины данных). Аналогично, каждая команда записи данных ожидает поступления двух элементов по внешней шине данных. Именно это обстоятельство объясняет, почему величина «длины пакета» (Burst Length, BL) при передаче данных в устройствах DDR SDRAM не может быть меньше 2.
Устройства типа DDR2 SDRAM являются логическим продолжением развития архитектуры «2n-prefetch», применяемой в устройствах DDR SDRAM. Вполне естественно ожидать, что архитектура устройств DDR2 SDRAM именуется «4n-prefetch» и подразумевает, что ширина внутренней шины данных оказывается уже не в два, а в четыре раза больше по сравнению с шириной внешней шины данных. Однако речь здесь идет не о дальнейшем увеличении количества единиц данных, передаваемых за такт внешней шины данных — иначе такие устройства уже не именовались бы устройствами «Double Data Rate 2-го поколения». Вместо этого, дальнейшее «уширение» внутренней шины данных позволяет снизить внутреннюю частоту функционирования микросхем DDR2 SDRAM в два раза по сравнению с частотой функционирования микросхем DDR SDRAM, обладающих равной теоретической пропускной способностью. С одной стороны, снижение внутренней частоты функционирования микросхем, наряду со снижением номинального питающего напряжения с 2.5 до 1.8 V (вследствие применения нового 90-нм технологического процесса), позволяет ощутимо снизить мощность, потребляемую устройствами памяти. С другой стороны, архитектура 4n-prefetch микросхем DDR2 позволяет достичь вдвое большую частоту внешней шины данных по сравнению с частотой внешней шины данных микросхем DDR — при равной внутренней частоте функционирования самих микросхем. Именно это и наблюдается в настоящее время — модули памяти стандартной скоростной категории DDR2-800 (частота шины данных 400 МГц) на сегодняшний день достаточно распространены на рынке памяти, тогда как последний официальный стандарт DDR ограничен скоростной категорией DDR-400 (частота шины данных 200 МГц).
Поскольку
DDR2 — это «все та же DDR», мы по-прежнему
имеем удвоенную скорость передачи данных
за один такт внешней шины данных — иными
словами, на каждом такте внешней шины
данных мы ожидаем получить не менее двух
элементов данных (как всегда, разрядностью,
равной разрядности внешней шины данных)
при чтении, и обязаны предоставить микросхеме
не менее двух элементов данных при записи.
В то же время, вспоминаем, что внутренняя
частота функционирования микросхем DDR2
составляет половину от частоты ее внешнего
интерфейса. Таким образом, на один «внутренний»
такт микросхемы памяти приходится два
«внешних» такта, на каждый из которых,
в свою очередь, приходится считывание/запись
двух элементов. Следовательно, на каждый
«внутренний» такт микросхемы памяти
приходится считывание/запись сразу четырех
элементов данных (отсюда и название —
4n-prefetch), т.е. все операции внутри микросхемы
памяти осуществляются на уровне «4-элементных»
блоков данных. Отсюда получаем, что минимальная
величина длины пакета (BL) должна равняться
4. Можно доказать, что, в общем случае,
архитектуре «2nn-prefetch» всегда
соответствует минимальная величина Burst
Length, равная 2n (n = 1 соответствует
DDR; n = 2 — DDR2; n = 3 — DDR3).
Информация о работе Динамика развития оперативной памяти с начала XXI века до наших дней