Автор работы: Пользователь скрыл имя, 18 Января 2011 в 16:38, реферат
Искусство получения железа из Греции распространилось в Центральную и Западную Европу, где ранний железный век относят к VII-V в. до н.э., а наиболее широкое распространение железа- к V-I в. до н.э. Первые сыродутные печи обнаружены в нынешней Австрии. Археологи их относят к периоду 1000- 4560 г. до н.э. Большой вклад в распространение железа в Европе в латинский период (V-I в. до н.э) внесли кельтские народы, овладевшие передовой по тому времени технологией получения железа.
Введение. 3
Развитие способов производства стали 5
Появление и развитие кислородно-конверторного способа производства стали. 11
Заключение 18
Список литературы 20
В СССР за 1965—71 выплавка стали в кислородных конвертерах увеличена с 4 до 23,2 млн. т в год, или в 5,8 раза.
Хорошие
технико-экономические
О динамике последующего развития кислородно-конвертерного производства говорят следующие цифры: В 1961 г. Во всем мире было введено 17 кислородно-конвертерных цехов (с 30 конверторами), а на начало 1963 г. были введены в строй уже 21 цех (с 50 конверторами). В 1962 году во всем мире было выплавлено ~32 мнл. т конверторной стали.
В 1977 году были внедрены процессы выплавки стали с нижней продувкой кислородом OBM/Q-BOP (1968, Oxygen-Bottom blowing — Maxhutte/Quick, Quiet, Quality — Basic Oxygen Process), K-OBM (Kombiniertes — комбинированный процесс с верхней и нижней продувкой кислородом, MaxhLitte) и аллотермический процесс КMS (Kombiniertes Maxhiitte Steelmaking Process) и позволили довести долю скрапа до 50 % [8, c 67]. Вдувание известняка и угля, а также технология дожигания были разработаны и получили широкое внедрение. Удельный расход дутья при нижней продувке обычно превышал 0,3 м3/т-мин и достигал 5 м3/т-мин. Около 55 млн. т стали производят ежегодно в мире с использованием технологии нижней продувки кислородом.
Эти усовершенствования конвертерной выплавки стали с нижней продувкой кислородом и комбинированной продувкой привели к прогрессу в процессе с верхней продувкой кислородом с дополнительным перемешиванием расплава путем вдувания инертного газа. Для такого перемешивания применяли N-, при высоком содержании углерода и Аг, когда достигали низкого содержания углерода. Перемешивание осуществляли через специальные огнеупорные перемешивающие элементы или через полые, не защищенные покрытием фурмы, установленные в днище конвертера. Расход дутья при нижней продувке не превышает 0,2 м3/т-мин. Почти все конвертеры в мире, работающие по схеме LD/BOF, используют эту усовершенствованную технологию.
Последней
вехой к настоящему времени, вероятно,
можно считать частичную
Известны, разумеется, и другие важные усовершенствования процесса конвертерной выплавки стали, касающиеся управления процессом, конструкции конвертеров с целью повышения их производительности, разделения стали и шлака в конце выпуска плавки, оборудования фурм для продувки, систем внешней газоочистки, электрических пылеуловителей с низким потреблением энергии и очисткой отходящих газов до содержания пыли в них менее 20 мг/м3, логистики металлургического производства вторичной металлургии, обработки горячего металла и т. д.
Сочетание всех этих разработок обусловило успешное развитие процесса кислородно-конвертерной выплавки стали за последние 50 лет.
Металлургический цех с двумя большими конвертерами производит примерно 1000 т/ч жидкой стали. В то же время цех с двумя очень крупными мартеновскими печами имеет производительность около 160 т/ч. В 1950 г. 80 % мирового производства стали еще приходилось на мартеновские печи, для которых характерны низкая производительность, высокие энергоемкость, расход огнеупоров и трудовые затраты. Мировая выплавка стали по различным технологиям показана на рис. 4 [8, c. 68]
Рис 4 Мировое производство стали
в слитках по различным
В настоящее время в конвертерах выплавляют около 60 %, в электродуговых печах — 34 %, в мартеновских печах — 4 %, по другим технологиям — 2 % мирового производства стали.
Первоначально
предполагалось выплавлять в кислородных
конвертерах рядовые
Увеличение производства стали будет происходить и дальше благодаря строительству новых мощных кислородно– конвертерных и электросталеплавильных цехов при полном прекращении строительства мартеновских печей.
Такое
изменение структуры
Производство стали в мартеновских печах в настоящее время составляет 3,8 % от мирового производства стали в слитках; вероятно, в 2007 г. этот показатель снизится до 2 %. Остальную сталь выплавляют в кислородных конвертерах и электродуговых печах.
В 2002 г. в мире объем стали, выплавленной кислородно-конвертерным способом, составил 541 млн. т. К 2007 г. этот показатель увеличится на 22 % и достигнет 659 млн. т. Доля кислородно-конвертерной стали останется постоянной — в пределах 60—61 %.[9]
Даже
после 50 с лишним лет использования,
схема производства доменная печь —
кислородный конвертер
Главные направления развития кислородно-конвертерного процесса: интенсификация плавки (в первую очередь продувки), повышение стойкости футеровки, применение современных средств контроля и управления с использованием ЭВМ, разработка новых технологических вариантов. Большие перспективы открывает перед кислородно-конвертерным процессом сочетание его с методами внепечного рафинирования металла.
Одним
из перспективных направлений