История развития криоэлектроники

Автор работы: Пользователь скрыл имя, 18 Апреля 2011 в 12:53, реферат

Краткое описание

Криогенная(от греческого "криос" - холод, мороз) электроника, или криоэлектроника, направление электроники, охватывающее исследование при криогенных температурах (ниже 120 К ) специфических эффектов взаимодействия электромагнитного поля с носителями зарядов в твердом теле и создание электронных приборов и устройств, работающих на основе этих эффектов, - криоэлектронных приборов.

Содержание работы

1. Введение
2. Часть 1. Исторические аспекты криоэлектроники
3. Часть 2. Основные направления криоэлектроники
4. Часть 3. Микроэлектроника и холод
Перспективы применения структур на основе контактов сверхпроводников с полупроводниками в криогенной микроэлектронике
5. Заключение
Новые проблемы и пути их решения
6. Вывод
7. Список литературы

Содержимое работы - 1 файл

История науки и техники.doc

— 160.50 Кб (Скачать файл)

    В лабораториях Института  проблем технологии микроэлектроники и  особо чистых материалов получены монокристаллы  многих сверхчистых  металлов — меди и серебра, никеля и кобальта, висмута  и свинца, индия, сурьмы, самария. Их проба чистоты чрезвычайно высока — до 99,999999 процента! Такая почти идеальная чистота удовлетворяет требованиям микроэлектроники, где металлы находят все более широкое применение.

    Жесткие требования микроэлектроники к чистоте используемых металлических материалов связаны с тем, что сверхчистый металл ведет себя почти как сверхпроводник, помехи электронам проводимости создают “чужие” атомы. А это значит, что при отсутствии таких помех, т.е. при работе со сверхчистыми металлами, не возникает (или, точнее, значительно слабее проявляется) проблема отвода тепла. Кроме того, что очень важно для электронно-вычислительной техники, непрерывно циркулирующий поток информации в виде заряда, волны и пр. в схеме, выполненной из сверхчистых металлов, не встретит препятствий, а это предохранит устройство от сбоев и ошибок.

    Получение сверхчистых металлов — тема особая, и  мы не будем ее касаться. Скажем только, что  сохранить вещество в чистом виде не менее сложно, чем  получить. И здесь  на помощь опять-таки приходит криогенная техника: один из эффективных способов сохранения чистоты металлических материалов — содержание их в условиях сверхнизких температур (в жидком азоте, а еще лучше — в жидком гелии).

    В Советском Союзе  разработан метод  определения чистоты  сверхчистых металлов (при содержании примесей менее 10 -4 процентов), основанный на использовании электромагнитных волн особого, типа — геликонов. Эти волны затухают в ряде металлов пропорционально концентрации примесей. Любопытно, что геликоны есть не что иное, как затухание электромагнитных волн, испускаемых плазмой заряженных частиц, что наблюдается лишь в вакууме. Иными словами, сверхчистые металлы проявляют свойства вакуума. Такое же сходство свойств с вакуумом сверхчистые металлы проявили при исследовании “пробега” в них свободных электронов. В сверхчистых образцах индия, например, охлажденных до температур ниже температуры кипения гелия, электроны проходили 8—10мм — как в вакууме! Более того, была доказана возможность с помощью магнитного поля фокусировать и управлять траекториями электронов проводимости внутри образца сверхчистого металла. Важно отметить, что в сверхчистых металлах плотность потока электронов проводимости составляет 10 22 электронов в 1 см 3 , т. е. почти как в вакууме и в сотни тысяч раз больше, чем в полупроводниках.

    Отсюда  был сделан естественный вывод: использование  сверхчистых металлов в конструкциях ЭВМ  резко повысило бы эффективность вычислительных и управляющих  систем. По мнению директора  Института проблем  технологии микроэлектроники и особо чистых материалов, члена-корреспондента АН СССР Ч. В. Копецкого, развитие науки и техники в этом направлении может привести к появлению новой отрасли — металлической электроники, или металлотроники. Основным элементом электронных систем, по его мнению, могут стать “триады” из двух сверхчистых металлических монокристаллов, соединенных (или разделенных) микромостиком (“длиной” до 100 мкм), изготовленным также из металлического монокристалла особой чистоты. Через такой микромостик при близких к абсолютному нулю температурах можно пропускать электроток огромной плотности — 10 9 — 10 10 А /см 2 . И мостик при этом даже не нагревается. Это поистине парадоксальное свойство сверхчистых металлов, ведь самый тугоплавкий металл обычной технической чистоты испаряется при плотности тока 10 5 на квадратный сантиметр.

    Одним словом, металлотроника в содружестве  с криогенной техникой являются продвижением научно-технического прогресса.

Перспективы применения структур на основе контактов  сверхпроводников с  полупроводниками в криогенной микроэлектронике

    Проблема  создания структур на основе контактов  С—П, приборов и многофункциональных  устройств на этих структурах является комплексной. Нужно  пройти большой путь от разработки воспроизводимой  технологии получения  простейших контактов и приборов, например полупроводникового (как это ни странно звучит) криотрона с джозефсоновским вентилем, сверхчувствительных детекторов дальнего ИК диапазона до криоэлектронных приемных устройств и вычислительных систем, в которых необходимо будет найти разумное сочетание различных рассматриваемых структур. Но в целом этот путь полезный и даёт много нового микроэлектронике. Это можно показать в виде условной схемы на рисунке № 1, в которой представлены не только структуры и приборы, о которых выше упоминалось, но и возможные перспективные приборы. Применение рассмотренных структур на основе контактов сверхпроводников с полупроводниками в криоэлектронике открывает новые возможности для создания различных (функциональных приборов: усилителей, детекторов, преобразователей, ПЗС с внутренним усилением, приемников ИК диапазона, линий задержки, регистров сдвига. Сочетание на одном полупроводниковом кристалле нескольких структур, выполненных в одном технологическом цикле, например структур, имеющих параметрические и детекторные элементы, в принципе позволяет поднять чувствительность криоэлектронных приемников прямого усиления до уровня супергетеродинных. Сочетание сверхпроводящих структур с полупроводниковым барьером, в которых при проявлении эффекта Джозефсона частоты принимаемого сигнала могут охватить практически весь ИК диапазон, с регистром сдвига на структурах с зарядовой связью и малошумящими усилительными элементами позволяет создать многоэлементные приемники с самосканированием, работающие в дальнем и сверхдальнем ИК диапазонах. Возможно создание на этой основе и многодиапазонных ПЗС ИК диапазона. При построении сложных интегральных схем на СВЧ микрополосковые линии и резонаторы усилителей могут быть выполнены непосредственно на той части поверхности полупроводникового кристалла, в которой при температурах Т<Т с наступает “вымораживание” носителей заряда и потери становятся примерно такими же, как и в хороших диэлектриках. На эту часть кристалла может быть нанесено и несколько дополнительных связанных пленочных сверхпроводящих резонаторов, образующих сверхпроводниковые СВЧ фильтры, либо преселекторы — усилители со сверхпроводниковыми резонаторами, предложенные и рассмотренные для мазера с пассивными сверхпроводниковыми резонаторами, либо Сп болометры. Способность работать при любых условиях охлаждения, вплоть до температур, близких к абсолютному нулю, где отсутствуют тепловые колебания, а шумы кристаллической решетки становятся исключительно малыми, причем ассортимент сверхпроводниковых и полупроводниковых материалов существенно расширен, является одним из ценных свойств рассматриваемых структур, которые базируются на передовой технологии БИС. Тенденция к освоению в микроэлектронике свойств твердого тела при криогенных температурах, проявившаяся благодаря успехам в создании различных криоэлектронных приемных систем на базе сверхпроводников, узкозонных полупроводников и других материалов, неуклонно пробивает себе дорогу. Одновременно, как видно из данной работы, появилась и другая тенденция, созревшая но мере развития электронного материаловедения и функциональной микроэлектроники. Это - переход к созданию в едином технологическом цикле уже не только материалов, например полупроводниковых кристаллов, и не только эпитаксиальных пленок из одного материала, но сначала “простых” полупроводниковых гетероструктур, МДП-структур, вплоть до рассматриваемых сложных структур С—П, С—П—С и др. Эти структуры можно назвать функциональными.

    Прикладное  значение контактов  сверхпроводников и  полупроводников  для микроэлектроники с годами, особенно по мере развития технологии получения сверхтонких однородных полупроводников, сверхпроводников, слоев и субмикронных зазоров, возрастало наряду с возрастанием значения полупроводниковых охлаждаемых гетероструктур.

    Новые криоэлектронные структуры на базе контактов сверхпроводников с полупроводниками и полуметаллами так же, как и новые структуры на базе контактов сверхпроводников с нелинейными сегнетоэлектриками в параэлектрической фазе (при Т>Т с ) и нелинейными криопараэлектриками, в которых заложены многие новые функциональные возможности, заняли свое место среди новых материалов и структур микроэлектроники. При этом могли появиться приборы как бы с тройной интеграцией: интеграцией элементов, интеграцией материалов и явлений и интеграцией функций в одной твердотельной схеме с корпусом-криостатом.

    Полезно обратить внимание на принципиальное различие между энергетической щелью (запрещенной  зоной) в полупроводнике и щелью в сверхпроводнике. В полупроводнике минимумы энергии  Е(р) определяются кристаллической решеткой и наличие щели приводит при Т==0 К (при отсутствии контакта со сверхпроводником), к нулевой проводимости. В сверхпроводнике минимумы Е(р) определяются взаимодействием электронов внутри электронной системы и наличие щели приводит к бесконечной проводимости.

    Заключение

Новые проблемы и пути их решения

    Криоэлектронику часто относят  к микроэлектронике, считая ее высшей ступенью создания интегральных пленочных схем для  ЭВМ. Это определение  весьма неполное и  охватывает только одно из направлений криоэлектроники—интегральную криотронику на тонкопленочных сверхпроводниковых элементах со слабой связью. В целом же интегральная криоэлектроника, базируясь на достижениях технологии современной микроэлектроники, включает более широкий круг проблем, без решения которых невозможно создать приборы, работающие при криогенных температурах и пригодные для серийного производства и постоянной эксплуатации. Дело в том, что криоэлектроника в отличие от полупроводниковой микроэлектроники опирается на новые физические явления, такие как: сверхпроводимость, эффекты Джозефсона, явления в узкозонных полупроводниках, полуметаллах, параэлектриках и др., проявляющиеся только при охлаждении и не реализованные ранее. При этом криоэлектронный микроприбор или интегральная криоэлектронная схема может представлять собой симбиоз охлаждаемой электронной схемы и охладителя (газового, электронного либо радиационного). Развитие интегральной криоэлектроники, как и развитие всей микроэлектроники, знаменует собой новый этап в электронной технике. Внедрение криоэлектронных приборов в народное хозяйство, в технику связи и телевидение, вычислительную, радиолокационную технику и приборостроение не только позволяет в больших системах уменьшить габариты, массу и стоимость аппаратуры при увеличении ее надежности, но и приведет к коренному улучшению электрических параметров этой аппаратуры. Как видно из приведенных материалов, уровень охлаждения в основном определяет параметры и область применения криоэлектронных приборов. Приборы азотного уровня охлаждения, самые дешевые и легкие, могут все шире применяться в массовой мобильной аппаратуре, а приборы гелиевого уровня охлаждения, энергопотребление которых в 25—70 раз больше, находят применение в стационарных, тяжелых объектах или там, где уже есть жидкий гелий. При этом электрические параметры приборов гелиевого уровня, в которых могут использоваться сверхпроводники, будут значительно лучше параметров приборов других уровней охлаждения, где сверхпроводники применить не удается. Границы применения криоэлектронных изделий трудно установить, но совершенно очевидно, что расширение и углубление научных, конструкторских и технологических работ в области криоэлектроники вообще и, в частности, техники криостатирования позволяет решить ряд важных проблем.

    Первая  проблема — освоение дальнего и сверхдальнего  ИК диапазонов для  приема естественных и лазерных ИК излучений. Это позволяет  расширить спектральные границы систем для  изучения природных  ресурсов Земли и  планет и поставить  новые твердотельные  охлаждаемые лазеры, эффективно работающие в ИК диапазонах на службу человеку.

    Вторая  проблема—создание  криоэлектронных  индикаторов слабого  теплового излучения  на базе интегральных приборов с зарядовой  связью для тепловидения в промышленности, геологии и в медицине. Есть основание полагать, что криоэлектронные индикаторы дадут возможность осуществить раннюю диагностику ряда раковых заболеваний.

    Третья  проблема—создание  массовых малогабаритных сверхчувствительных  приемников, воспринимающих с высокой избирательностью по частоте и помехозащищенностью такие слабые радиосигналы, которые обычные приемники даже не в состоянии обнаружить. Эти приборы находят самое широкое применение в системах оповещения, управления, связи, телевидения, телеметрии, пассивной локации и навигации, космической техники, радиоастрономии, приборостроения и системах наведения. При этом, например, дальность обнаружения пассивной локации, связи, телеметрии возрастает в 2—3 раза, защита от помех в 10—100 раз. Прием сверхдальнего телевидения через спутник в любой точке страны в новых высокоинформативных участках СВЧ диапазона возможен непосредственно домашними телевизорами с помощью небольшой коллективной антенны. Разработка твердотельных перестраиваемых и модулируемых лазеров дальнего ИК диапазона и создание нового тина твердотельных СВЧ генераторов, имеющих при высоком к. п. д. стабильность частоты, присущую квантовым генераторам, в десятки и сотни раз большую выходную мощность во всем СВЧ диапазоне, является четвертой проблемой.

    Криоэлектроника позволила создать большие и сверхбольшие интегральные схемы нового типа на основе сверхпроводящих пленочных структур для разработки нового класса электронных вычислительных машин со сверхбольшой памятью, меньших по габаритам и в 10— 100 раз более производительных, чем ранее существующие. В результате успешного решения технологических проблем в 1980—1985 гг. были изготовлены ЗУ с емкостью 256 Кбит на кристалле, временем записи и считывания 620 и 340 нс соответственно и потребляемой мощностью 7 мкВт.

    Согласно прогнозам давних лет сверхпроводниковая ЭВМ могла бы быть изготовлена к 1990 г., причем память большой емкости - к 1983—1985 гг., а Центральный криоэлектронный процессор - к 1985—1987 гг. Однако из-за необходимости охлаждения сверхпроводниковые вычислительные устройства имеют ограниченные специальными целями применения. Значительный прогресс в разработке и выпуске, холодильных устройств (криостатов и рефрижераторов с замкнутым циклом на температуру 4,2 К) существенно удешевляет затраты, связанные с охлаждением. Действительно, ЗУ емкостью 10 8 бит состоит из 5*10 3 пластин размером 1 см 2 содержащих каждая 2*10 4 бит. Мощность, потребляемая одной платой 10 -4 Вт, полным ЗУ—0,5 Вт.

    В эти же годы, по прогнозу, должны были быть созданы  комбинированные (с  газовым каскадом) и электронные твердотельные микроохладители на различные уровни криогенных температур, вакуумные и твердотельные приборы со сверхпроводящими соленоидами для освоения новых СВЧ диапазонов (миллиметровых и субмиллиметровых волн), измерительные приборы с разрешающей способностью и чувствительностью в 100—1000 раз лучше существующих.

    Характерной чертой электроники  являлось разнообразие материалов, применяемых  в электронной  технике. Наряду с  диэлектриками и  широкозонными полупроводниками все большую роль в электронике играли узкозонные полупроводники, материалы с температурой Кюри, лежащей в области криогенных температур, и сверхпроводящие материалы. Если ранее широкому внедрению сверхпроводников в электронику препятствовало то, что сверхпроводимость в них наступала при очень глубоком охлаждении, близком к абсолютному нулю, то теперь положение коренным образом изменилось. Синтезированы новые материалы, которые уже при Т~20 К становятся сверхпроводниками, созданы узкозонные полупроводниковые твердые растворы, полуметаллы, тонкие пленки, гетеро- и варизонные структуры на их основе, параэлектрические пленки на SrTiO 3 с высокой нелинейностью, примесные пленки. Для выполнения столь обширной программы в области криоэлектроники необходима консолидация научных сил, занимающихся низкотемпературным материаловедением, низкотемпературной электроникой твердого тела и криогенным приборостроением, а также проведение фундаментальных работ по основным направлениям криоэлектроники, без которых нельзя ликвидировать создавшийся разрыв между большими открытиями в физике низких температур, прежде всего по сверхпроводимости и свойствам узкозонных полупроводников, полуметаллов и параэлектриков при криогенных температурах, и возможностью их широкого практического использования. Вместе с тем очевидно, что развитие криоэлектроники обогащало научно-техническую оснащенность страны, способствовало более быстрому развитию физики, химии, радиотехники, связи, автоматики, приборостроения. С каждым годом увеличивалось влияние криоэлектроники на другие области электронной техники. Это обусловлено тем, что непрерывное улучшение параметров электронных приборов постепенно приближает их к теоретически возможному пределу при обычных температурах. Глубокое охлаждение позволяет намного перешагнуть эти пределы и применять охлажденные приборы в едином модуле с криоэлектронными, что приводит к комплексной микроминиатюризации сложной радиоэлектронной аппаратуры.

Информация о работе История развития криоэлектроники