Автор работы: Пользователь скрыл имя, 24 Января 2012 в 15:11, реферат
Теория надежности – научная дисциплина, в которой разрабатываются и изучаются методы обеспечения эффективности работы объектов (изделий, устройств, систем и т.п.) в процессе эксплуатации. В теории надежности вводятся показатели надёжности объектов, обосновываются требования к надёжности с учётом экономических и других факторов, разрабатываются рекомендации по обеспечению заданных требований к надёжности на этапах проектирования, производства, хранения и эксплуатации.
Теория надежности – научная дисциплина, в которой разрабатываются и изучаются методы обеспечения эффективности работы объектов (изделий, устройств, систем и т.п.) в процессе эксплуатации. В теории надежности вводятся показатели надёжности объектов, обосновываются требования к надёжности с учётом экономических и других факторов, разрабатываются рекомендации по обеспечению заданных требований к надёжности на этапах проектирования, производства, хранения и эксплуатации.
Количественные
показатели надёжности вводят в теорию
на основе построения математических
моделей рассматриваемых
Надёжность изделия – свойство изделия сохранять значения установленных параметров функционирования в определённых пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, хранения и транспортирования. Надёжность – комплексное свойство, которое в зависимости от назначения изделия и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определённое сочетание этих свойств как изделия в целом, так и его частей. Основное понятие, используемое в теории надёжности, – понятие отказа, т.е. утраты работоспособности, наступающей либо внезапно, либо постепенно. Работоспособность – такое состояние изделия, при котором оно соответствует всем требованиям, предъявляемым к его основным параметрам. К числу основных параметров изделия относятся: быстродействие, нагрузочная характеристика, устойчивость, точность выполнения производственных операций и т.д. Вместе с другими показателями (масса, габариты, удобство в обслуживании и др.) они составляют комплекс показателей качества изделия. Показатели качества могут изменяться с течением времени. Изменение их, превышающее допустимые значения, приводит к возникновению отказового состояния (частичного или полного отказа изделия). Показатели Надёжность нельзя противопоставлять другим показателям качества: без учёта Надёжность все другие показатели качества изделия теряют свой смысл, точно так же и показатели Надёжность становятся полноценными показателями качества лишь в сочетании с др. характеристиками изделия. Понятие «Надёжность изделия» давно используется в инженерной практике. Любые технические устройства – машины, инструменты или приспособления – всегда изготавливались в расчёте на некоторый достаточный для практических целей период использования. Однако долгое время Надёжность не измерялась количественно, что значительно затрудняло её объективную оценку. Для оценки Надёжность использовались такие понятия, как высокая Надёжность, низкая Надёжность и др. качественные определения. Установление количественных показателей Надёжность и способов их измерения и расчёта положило начало научным методам в исследовании Надёжность На первых этапах развития теории Надёжность основное внимание сосредоточивалось на сборе и обработке статистических данных об отказах изделий. В оценке Надёжность преобладал характер констатации степени надёжности на основании этих статистических данных. Развитие теории надёжности сопровождалось совершенствованием вероятностных методов исследования, как-то: определение законов распределения наработки до отказа, разработка методов расчёта и испытаний изделий с учётом случайного характера отказов и т.п. Вместе с тем возникали новые направления исследований: поиск принципиально новых способов повышения надёжности, прогнозирование отказов и прогнозирование надёжности, анализ физико-химических процессов, оказывающих влияние на надёжность, установление количественных связей между характеристиками этих процессов и показателями. Надёжность, совершенствование методов расчёта Надёжность изделий, обладающих всё более сложной структурой, с учётом всё большего числа действующих факторов (достоверность исходных данных, контроль и профилактика, условия работы и обслуживания и т.д.). Испытания на Надёжность совершенствовались главным образом в направлении проведения ускоренных и неразрушающих испытаний. Наряду с совершенствованием натурных испытаний широкое распространение получили математическое моделирование и сочетание натурных испытаний с моделированием. В результате к 50-м гг. 20 в. сформировались основы общей теории Надёжность и её частных направлений по отдельным видам техники.
Увеличивающаяся
сложность технических
Техническим средствам
отводят всё более
Количественные показатели надёжности. Надёжность изделий определяется набором показателей; для каждого из типов изделий существуют рекомендации по выбору показателей Надёжность Для оценки Надёжность изделий, которые могут находиться в двух возможных состояниях – работоспособном и отказовом, применяются следующие показатели: среднее время работы до возникновения отказа Тср – наработка до первого отказа; среднее время работы, приходящееся на один отказ, Т – наработка на отказ; интенсивность отказов l(t); параметр потока отказовw(t); среднее время восстановления работоспособного состояния tв; вероятность безотказной работы за время t [Р (t)]; готовности коэффициент Kr.
Закон распределения
наработки до отказа определяет количественные
показатели Надёжность невосстанавливаемых
изделий. Закон распределения
Для восстанавливаемых изделий вероятность появления n отказов за время t в случае простейшего потока отказов определяется законом Пуассона:
Из него следует, что вероятность отсутствия отказов за время t равна Р (t) = exp(-lt) (экспоненциальный закон надёжности).
Технические системы, состоящие из конструктивно независимых узлов, обладающие способностью перестраивать свою структуру для сохранения работоспособности при отказе отдельных частей, в теории Надёжность принято называть сложными техническими системами (в отличие от сложных кибернетических систем, называются также большими системами). Число работоспособных состоянии таких систем – два и более. Каждое из работоспособных состояний характеризуется своей эффективностью работы, которая может измеряться производительностью, вероятностью выполнения поставленной задачи и т.д. Показателем Надёжность сложной системы может быть суммарная вероятность работоспособности системы – сумма вероятностей всех работоспособных состояний системы.
Способы определения количественных показателей надёжности. Показатели Надёжность определяются из расчётов, проведением испытаний и обработкой результатов (статистических данных) эксплуатации изделий, моделированием на ЭВМ, а также в результате анализа физико-химических процессов, обусловливающих Надёжность изделия. Расчёты Надёжность основаны на том, что при определенной структуре изделия и имеющемся законе распределения наработки до отказа изделий этого типа существуют вполне определенные зависимости между показателями Надёжность отдельных элементов и Надёжность изделия в целом. Для установления таких зависимостей используются следующие приемы: решение уравнении, составленных на основании структурной схемы Надёжность (использование последовательно-параллельных структур) или на основании логических связей между состояниями изделия (использование алгебры логики); решение дифференциальных уравнений, описывающих процесс перехода изделия из одного состояния в другие (использование графов состояний); составление функций, описывающих состояния сложного изделия. Расчёты надёжности производятся главным образом на этапе проектирования изделий с целью прогнозирования для данного варианта изделия ожидаемой Надёжность. Это позволяет выбрать наиболее подходящий вариант конструкции и методы обеспечения Надёжность, выявить «слабые места», обоснованно назначить рабочие режимы, форму и порядок обслуживания изделия.
Испытания на надёжность
производятся на этапах разработки опытного
образца и серийного
Моделирование на ЭВМ является наиболее эффективным средством анализа надёжности сложных систем. Широко распространены два алгоритма моделирования: первый, основанный на моделировании физических процессов, происходящих в исследуемом объекте (оценка Надёжность при этом определяется по числу выходов параметров объекта за пределы допуска); второй, основанный на решении систем уравнений, описывающих состояния исследуемого объекта.
Анализ физико-химических
процессов также позволяет
Способы повышения надёжности. На стадии разработки изделий: использование новых материалов, обладающих улучшенными физико-химическими характеристиками, и новых элементов, обладающих повышенной надёжностью по сравнению с применявшимися ранее; принципиально новые конструктивные решения, например замена электровакуумных ламп полупроводниковыми приборами, а затем интегральными схемами; резервирование, в том числе аппаратурное (поэлементное), временное и информационное; разработка помехозащищённых программ и помехозащищённого кодирования информации; выбор оптимальных рабочих режимов и наиболее эффективной защиты от неблагоприятных внутренних и внешних воздействий; применение эффективного контроля, позволяющего не только констатировать техническое состояние изделия (простой контроль) и устанавливать причины возникновения отказового состояния (диагностический контроль), но и предсказывать будущее состояние изделия, с тем чтобы предупреждать возникновение отказов (прогнозирующий контроль).
В процессе производства:
использование прогрессивной
Во время эксплуатации:
обеспечение заданных условий и
режимов работы; проведение профилактических
работ и обеспечение изделий
запасными деталями, узлами и элементами,
инструментом и материалами; диагностический
контроль, предупреждающий о
В ходе развития
техники возникают новые
Нагрузки, на которые производится расчет оснований и фундаментов зданий и сооружений, необходимо устанавливать, исходя из результатов расчета, учитывающего совместную работу сооружения и основания. Нагрузки на основания можно определить и без учета их перераспределения несущими конструкциями здания в следующих случаях: при возведении зданий и сооружений, относящихся к III классу долговечности; при расчете общей устойчивости грунтового массива совместно с возводимым зданием; при определении средних значений деформаций основания, если расчет деформаций выполняется в стадии привязки типового проекта к местным грунтовым условиям района строительства.
Нагрузки, учитываемые
при расчетах оснований и фундаментов,
подразделяют на постоянные, временные
длительно действующие, кратковременные
и особые.
Постоянные нагрузки действуют в течение
всего времени эксплуатации, а временные
— в отдельные периоды и могут иногда
полностью прекращать свое действие.
К постоянным нагрузкам
относят собственный вес