Автор работы: Пользователь скрыл имя, 27 Марта 2012 в 22:08, курсовая работа
Изучение карбонатных отложений имеет огромное значение для развития нефтегазовой промышленности на территории Волго-Уральской нефтегазоносной провинции. Нужно сказать, что Волго-Уральский бассейн является наиболее изученным из всех. В этом смысле его можно даже принять за эталон изученности нефтегазоносных бассейнов. Все возможные месторождения в верхних слоях осадочного чехла бассейна уже разведаны и разрабатываются, а многие уже истощены или находятся в режиме падающей добычи. Поэтому с изучением карбонатных отложений связываются перспективы открытия новых месторождений нефти и газа в Волго-Уральской провинции.
Целью данной работы является изучение геологического строения карбонатных отложений и выявление возможных перспектив нефтегазоносности.
Реферат............................................................................................................................................3
Введение...……...............................................................................................................................4
Терминология…………………………………………………...………………………………...5
Волго-Уральская нефтегазоносная провинция…………...…………………………..……..9
2.1. Физико-географическое положение……………………….……………………….………..9
2.2. История Волго-Уральской нефтегазоносной области………………………......................9
2.3. Основные черты геологического строения. …………………………...…………………..11
2.4. Нефтегазоносность…………………………………………………………………………..11
2.5. Комплексы Волго-Уральской нефтегазоносной провинции………………..……………12
2.6 Типы залежей нефти и газа на месторождениях…………………………………………...14
Классификация пород – коллекторов ….…………………………….…….…………..…….16
3.1 Классификация карбонатных коллекторов …………………………….…...........................17
4. Петрографическая характеристика пород – коллекторов…………………………………18
4.1 Петрофизические признаки карбонатных пород-коллекторов.......…………………...…...18
4.2 Петрографические признаки терригенных пород-коллекторов……………………………19
5. Методика определения коллекторских свойств в лабораторных условиях…...…............23
6 .Коэффициент пористости и проницаемости…………………………………..........................24
Заключение………………………………………………………………………………………..27
Библиографический список……………………………………………………….......................28
Приложение………………………...…………………………………………
2) характеристика обломочных зерен: вторичные изменения (регенерация, растворение, перекристаллизация зерен), число контактов с соседними зернами, тип их сочленения (касательные, конформные, инкорпорационные и т. д.);
3) цемент: тип цементации (базальный, поровый, открыто-поро-вый, пленочный);
4) структура цемента (тонкозернистый, пойкилитовый, крустификационный и др.);
5) типы пористости, связанные с вторичным преобразованием цемента (поры выщелачивания, перекристаллизации, трещинные поры и др.).
Рассмотрим значение перечисленных факторов в формировании терригенной породы-коллектора.
Размер зерен. Теоретически пористость не зависит от размера зерен. Так, например, К. Слихтер (1899) указывал, что значения теоретической пористости не зависят от величины зерен, а изменяются только в зависимости от плотности их укладки. Это утверждение справедливо в том случае, когда зерна имеют идеальную сферическую форму и одинаковый размер. Если размер зерен породы различен, то более мелкие частицы занимают поровое пространство, образованное более крупными, с уменьшением величины пористости.
По экспериментальным данным в хорошо отсортированных песках пористость уменьшается с увеличением размера зерен. В ряде случаев, например для речных песков, наблюдается обратная зависимость (Селли, 1981). По-видимому, это обусловлено характером упаковки зерен, т.е. их текстурными признаками.
Пористость песчаников, алевролитов и глин может быть одинакова, но неравноценна с точки зрения коллекторских свойств осадочных образований. Песчано-алевритовые породы будут являться коллекторами нефти и газа, тогда как глины при той же пористости практически непроницаемы.
Проницаемость увеличивается с увеличением размера зерен. В более тонкозернистых осадках каналы между порами тоньше, следовательно, и более высокое капиллярное воздействие.
Сортированность. Пористость увеличивается с ростом степени отсортированности зернистого материала. Проницаемость коллектора также возрастает с увеличением степени отсортированности породы. Объяснением этому, по-видимому, служит то, что более мелкие частицы (матрикс) закупоривают поровое пространство породы, а песчаный материал, складываясь в определенные упаковки, оставляет свободное емкостное пространство.
Форма и округленность. Угловатые, неправильной формы зерна могут укладываться или более плотно, или более рыхло, чем сферические. В связи с этим породы будут характеризоваться меньшей или большей пористостью по сравнению с породами, сложенными сферическими зернами. При наименьшей пористости зерна должны иметь угловатую форму и в укладке их должно быть соблюдено смещение поверхностей. В природных условиях довольно часто наблюдается сравнительно рыхлая укладка зерен, обладающих неправильной, угловатой формой, что отражается на величине пористости.
Упаковка зерен. Теоретическая пористость агрегатов, составленных из сфер одинакового диаметра, в зависимости от укладки (ромбоэдрическая или кубическая) может колебаться от 26 до 48 %. Эти пределы хорошо согласуются с пределами пористости песков, большинство которых при естественном залегании имеет пористость от 30 до 50 %.
Минеральный состав. На фильтрационные параметры коллекторов существенное влияние оказывает помимо структурно-текстурных признаков минеральный состав как зерновой, так и цементирующей части породы.
Среди факторов, влияющих на формирование порового пространства коллекторов, т.е. их коллекторского потенциала, существенная роль принадлежит глинистым минералам, присутствующим в виде примеси или цемента. Первичная пористость глинистых осадков значительно выше пористости песчаных. Пористость свежеотложенных тонких глинистых осадков превышает 80 % (Ханин, 1969). Наибольшую пористость имеет осадок, образующийся в воде, свободной от электролитов. Но высокая пористость глинистых осадков на стадии седиментогенеза не означает заложения хороших коллекторских свойств породы. Во-первых, в глинах преобладает закрытая или частично открытая пористость, во-вторых, большая часть пор заполнена водой, следовательно, эффективная пористость пород мала.
Степень влияния минерального состава глинистых примесей на коллекторские свойства пород тесно связана со строением их кристаллической решетки. Установлено, что максимально снижают проницаемость пород минералы монтмориллонитовой группы. Добавление 2 % монтмориллонита к крупнозернистому кварцевому песчанику снижает его проницаемость в 10 раз, а 5 % монтмориллонита - в 30 раз. Этот же кварцевый песчаник с примесью каолинита 15 % все еще сохраняет хорошую проницаемость.
На фильтрацию флюидов через коллектор влияет также форма выделения глинистого вещества в поровом пространстве коллектора. Если глинистый матрикс распределен равномерно, то влияние глинистого вещества тем сильнее, чем мельче зерна породы и хуже сортированность обломочного материала, т.е. сложнее структура порового пространства. При равномерном распределении глинистое вещество превращает первоначально крупные поры в мелкие, тупиковые, а сообщающиеся поры приобретают сложные очертания, что препятствует движению нефти по пласту. И чем больше глинистого вещества, тем больше усложняется конфигурация пор и затрудняется движение флюида по пласту.
Существенно влияет на уменьшение размера пор способность глинистых минералов к пластическим деформациям. При увеличении статистической нагрузки на коллектор с равномерно распределенным глинистым цементом глинистое вещество вследствие своей пластичности способно заполнить эффективные каналы, что может привести к полной потере породой емкостных и фильтрационных свойств. В этом случае коллектор становится покрышкой и может экранировать залежи нефти в нижележащих коллекторах.
Кроме глинистого вещества роль цемента в терригенных породах могут выполнять карбонатные минералы, соли, кремнезем и др.
Соли (гипс, ангидрит и пр.) ухудшают коллекторские свойства. Так, песчаники с базальным гипс-ангидритовым цементом являются практически флюидоупорами. Присутствие кремнистого цемента (опаловый, халцедоновый, кварцевый) также негативно сказывается на фильтрационно-емкостных свойствах пород. Но, учитывая высокую хрупкость кремнистых пород, при глубоком катагенетическом преобразовании породы могут приобрести вторичную трещинную пористость. Распространенным минеральным типом цемента в терригенных породах является карбонатное вещество, которое неоднозначно влияет на коллекторские свойства и подробно рассматривается ниже.
При петрографической характеристике породы важно указывать морфологию и размеры пустотного пространства (% от площади шлифа) и его генетическую приуроченность (например, седиментационная межзерновая пористость, поры выщелачивания в кальцитовом цементе, поры перекристаллизации цемента, микротрещины обломочных зерен и цементирующего вещества и др.).
Таким образом, при характеристике петрографических признаков терригенных пород-коллекторов следует подробно характеризовать структуру (размер зерен, степень их окатанности, изометричности, сортированности); текстуру (характер укладки и ориентировки зерен); соотношение зерен и цемента в породе (в %); минеральный состав обломочных зерен и степень их измененности; минеральный состав цемента, а также морфологию и размеры пустотного простанства.
5. Методика определения коллекторских свойств в лабораторных условиях
Предназначены для определения важнейших параметров пород-коллекторов.
Выделяются три основных класса методов:
лабораторные:
o физические, для определения:
абсолютной и открытой пористости;
плотности;
абсолютной и относительной фазовой проницаемости;
водо- и нефтенасыщенности;
остаточной водонасыщенности;
нефтеотдачи;
o петрографические, для определения:
пористости,
трещинной пористости,
трещинной проницаемости,
плотности трещиноватости;
гидродинамические:
o стационарная фильтрация, для определения проницаемости;
o нестационарная фильтрация, для определения пьезопроводности (пористости, проницаемости, сжимаемости);
промыслово-геофизические, для определения пористости, водонасыщенности.
Лабораторные методы используются на всех этапах изучения коллекторов и основаны на исследовании в лабораторных условиях поднятого из скважин керна или собранных на обнажениях коренных пород образцов.
Полученные физическими методами данные о пористости, проницаемости, водонефтенасыщенности и остаточной водонасыщенности являются наиболее достоверными и используются при подсчете запасов месторождений и при составлении проекта их разработки.
Петрографические методы служат для ориентировочной оценки пористости, параметров микротрещиноватости; чаще всего они используются на первых этапах поисков и разведки.
6.Коэффициент пористости и проницаемости
Основные признаки пород-коллекторов
К основным признакам, характеризующим качество коллектора, относятся пористость, проницаемость, плотность, насыщение пор флюидами (водо-, нефте- и газонасыщенность), смачиваемость, пьезопроводность, упругие силы пласта. Совокупность этих признаков, выраженных количественно, определяет коллекторские свойства породы.
Пористость - совокупность всех пор независимо от их формы, размера, связи друг с другом. Понятие пористости соответствует полной пористости породы и численно выражается через коэффициент пористости:
Кп = Vпор/Vпороды* 100 %.
Открытая пористость - совокупность сообщающихся между собой пор, численно соответствующая отношению объема сообщающихся пор к объему породы.
Эффективная пористость - совокупность пор, через которые может осуществляться миграция данного флюида. Она зависит от количественного соотношения между флюидами, физических свойств данного флюида, самой породы. По А. А. Ханину (1969), эффективная пористость - объем поровой системы, способной вместить нефть и газ с учетом остаточной водонасыщенности.
Наиболее высокие значения характерны для полной пористости, затем открытой и минимальные для эффективной пористости.
Полная пористость может быть открытой в песках и слабо уплотненных песчаниках. С увеличением глубины залегания открытая пористость снижается интенсивнее, чем полная. Величина полной пористости колеблется от долей процента до десятков процентов.
По генезису поры могут быть первичными и вторичными. Первичные поры между обломочными зернами называются межзерновыми, внутри органических остатков - внутриформенными. Вторичные поры - трещины и каверны.
Размеры порового пространства - от долей микрометров до десятков метров. В обломочных породах - песчаных и алевритовых - размер пор обычно меньше 1 мм. По размеру выделяются поры сверхкапиллярные > 0,1 мм; капиллярные 0,0002-0,1 мм; субкапиллярные < 0,0002 мм; ультракапиллярные < 0,1 мкм.
Размеры и конфигурация внутриформенной пористости определяется морфологическими особенностями фоссилизированных органических остатков.
Каверны - поры, образованные в результате растворения составных частей хемогенных или биогенных пород или разложения соединений, неустойчивых в определенных термобарических обстановках. Каверны по размеру бывают от долей миллиметров до нескольких километров и разделяются на мелкие - 0,1-10 мм; крупные (микрополости) - 10-100 мм и пещеристые полости - > 100 мм.
Проницаемость - способность горных пород пропускать сквозь себя жидкость или газ. Пути миграции флюидов - поры, каверны, соединяющиеся каналами, трещины. Чем крупнее пустоты, тем выше проницаемость. Для оценки проницаемости обычно используется линейный закон фильтрации Дарси, согласно которому скорость фильтрации жидкости в пористой среде пропорциональна градиенту давления и обратно пропорциональна динамической вязкости жидкости. Закон Дарси применим при условии фильтрации однородной жидкости, при отсутствии адсорбции и других взаимодействий между флюидом и горной породой. Величина проницаемости выражается через коэффициент проницаемости (Кпр):
Кпр = Q m L / D p F ,
где Q - объем расхода жидкости в единицу времени; D р - перепад давления; L - длина пористой среды; F - площадь поперечного сечения элемента пласта; m - вязкость жидкости. Выразив величины, входящие в приведенное выше уравнение, в системе единиц СИ, получим: Q = м3/ с; D р = Н/ м2; L = м; F = м2; m = Н*с/ м2; Кпр = м2. Единица проницаемости в системе СИ соответствует расходу жидкости 1м3/с при фильтрации ее через пористый образец горной породы длиной 1м, площадью поперечного сечения 1 м2при вязкости жидкости н*с/м2 при перепаде давления 1н/м2.
Практической единицей измерения проницаемости является дарси. 1 дарси - проницаемость пористой системы, через которую фильтруется жидкость с вязкостью 1 сантипуаз (сП), полностью насыщающая пустоты среды, со скоростью 1 см3/с при градиенте давления 1 атм (760 мм) и площади пористой среды 1 см2. 1 дарси = 0,981 ? 10-12 м2.
Различают несколько видов проницаемости:
Абсолютная проницаемость - это проницаемость горной породы применительно к однородному флюиду, не вступающему с ней во взаимодействие, при условии полного заполнения флюидом пор среды. Абсолютная проницаемость измеряется в сухой породе при пропускании через последнюю сухого инертного газа (азота, гелия).
В природе не встречаются породы, не заполненные флюидами (различными газами, жидкими углеводородами, водой и т.д.). Обычно поровое пространство содержит в различных количествах воду, газ и нефть. Каждый из флюидов оказывает воздействие на фильтрацию других. Поэтому редко можно говорить об абсолютной проницаемости в природных условиях.
Информация о работе Регионально нефтегазоносные комплексы волго-уральской провинции