Автор работы: Пользователь скрыл имя, 31 Марта 2012 в 16:08, отчет по практике
Основой нефтегазодобывающего предприятия является эксплутационный фонд скважин. Как известно в нефтегазовой отрасли по назначению скважины подразделяются на поисковые, разведочные, эксплутационные. На отечественных промыслах эксплутационный фонд скважин составляет около 140 тысяч единиц. Ежегодно строиться и сдаются в эксплуатацию многие сотни новых скважин.
1.Введение.
2. Конструкция оборудования забоев скважин.
3. Методы освоения нефтяных скважин.
4. Фонтанный и газлифтный способы добычи нефти.
5. Штанговые скважинные насосные установки (ШСНУ).
6. Эксплуатация скважин погружными электроцентробежного насосами.
7. Промыслово-геофизические методы исследования и Гидродинамические скважин и пластов.
8. Способы воздействия на призабойную зону скважин.
9. Текущий и капитальный ремонт скважины. Состав и организация работ при КРС. Ликвидация скважин.
10.Охрана труда при освоении скважин.
11. Охрана окружающей среды и недр при освоении скважин.
При ходе плунжера вниз всасывающий клапан под действием давления столба откачиваемой жидкости закрывается, нагнетательный клапан открывается и жидкость перетекает в надплунжерное пространство цилиндра.
Откачиваемая жидкость отводится из колонны через боковой отвод устьевого сальника и направляется в промысловую сеть.
Недостатками штанговых насосов является ограниченность глубины их подвески и малая подача нефти из скважин.На заключительной стадии эксплуатации вместе с нефтью из скважин поступает большое количество пластовой воды, применение штанговых насосов становится малоэффективным. Этих недостатков лишены установки погружных электронасосов УЭЦН (рис.6, табл. 1.1).
Погружные насосы – это малогабаритные (по диаметру) центробежные, секционные, многоступенчатые насосы с приводом от электродвигателя. Обеспечивают подачу 10÷1300 м3/сут и более напором 450÷2000 м вод.ст. (до 3000 м).
В зависимости от поперечного размера погружного агрегата, УЭЦН делят на три условные группы: 5, 5А и 6 с диаметрами соответственно 93, 103, 114 мм, предназначенные для эксплуатационных колонн соответственно не менее 121,7; 130; 114,3 мм.
Пример условного обозначения - УЭЦНМК5-50-1200, где У ‑ установка; Э ‑ привод от погружного электродвигателя; Ц ‑ центробежный; Н – насос; М ‑ модульный; К – коррозионно-стойкого исполнения; 5 – группа насоса; 50 ‑ подача, м3/сут; 1200 – напор, м.
Электродвигатели в установках применяются асинхронные, 3 фазные с короткозамкнутым ротором вертикального исполнения ПЭД40-103 - обозначает: погружной электродвигатель, мощностью 40 кВт, диаметром 103 мм. Двигатель заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим для охлаждения и смазки.
Для погружных электродвигателей напряжение составляет 380-2300 В, сила номинального тока 24,5÷86 А при частоте 50 Гц, частота вращения ротора 3000 мин –1, температура окружающей среды +50÷900С.
Модуль-секция насос – центробежный многоступенчатый, секционный. Число ступеней в насосном агрегате может составлять от 220 до 400.
При откачивании пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25% (до 55%) по объему свободного газа, к насосу подсоединяется газосепаратор, который отводит в затрубное пространство часть газа из пластовой жидкости и улучшает работу насоса.
|
Рис.6
Рис. 7. Гидравлическая характеристика ПЭЦН
Таблица 1.1
Наименование установок | Минималь-ный (внутр.) диаметр эксплуатационной колонны | Попереч-ный габарит установки, мм | Пода-ча, м3/сут | Напор, м | Мощнось двигателя, кВт | Тип газосепа-ратора |
УЭЦНМ5-50 |
121,7 |
112 | 50 | 990÷1980 | 32÷45 |
|
УЭЦНМ5-80 | 80 | 900÷1950 | 32÷63 |
| ||
УЭЦНМК5-80 |
|
|
|
| ||
УЭЦНМ5-125 | 125 | 745÷1770 |
| 1МНГ5 | ||
УЭЦНМК5-125 |
|
|
|
| ||
УЭЦНМ5-200 | 200 | 640÷1395 | 45÷90 | 1МНГК5 | ||
УЭЦНМ5А-160 |
130,0 |
124 | 160 | 790÷1705 | 32÷90 | МНГА5 |
УЭЦНМ5А-250 | 250 | 795÷1800 | 45÷90 | МНГА5 | ||
УЭЦНМК5-250 |
|
|
|
| ||
УЭЦНМ5А-400 | 400 | 555÷1255 | 63÷125 | МНГК5А | ||
УЭЦНМК5А-400 |
|
|
|
| ||
УЭЦНМ6-250 |
144,3 |
137 | 250 | 920÷1840 | 63÷125 |
|
УЭЦНМ6-320 | 320 | 755÷1545 |
|
| ||
УЭЦНМ6-500 | 144,3 или 148,3 | 137 или 140,5 |
500 |
800÷1425 |
90÷180 |
|
УЭЦНМ6-800 | 148,3 | 140,5 | 800 | 725÷1100 | 125÷250 |
|
УЭЦНМ6-1000 | 148,3 | 140,5 | 1000 | 615÷1030 | 180÷250 |
|
Гидравлическая характеристика погружного электроцентробежного насоса (ПЭЦН) «мягкая», дается заводом – изготовителем при работе насоса на воде плотностью ρ =1000 кг/м3 (количество ступеней - 100) и представляет собой зависимости (см. рис. 7): напора Н от подачи Q (Н=f(Q)); коэффициента полезного действия КПД - h от Q (h = f(Q)); мощности N от Q (на рис. не показано). При закрытой задвижке и подаче Q = 0, насос развивает максимальный напор Hmax (кривая 1). В этом случае КПД равен нулю. Если насос работает без подъема жидкости (Н = 0, h = 0), подача его максимальна (Qmax).
Наиболее целесообразная область работы насоса - зона максимального КПД (кривая 2). Значение hmax достигает 0,5 ¸ 0,6. Режим эксплуатации насоса, когда напор Нопт и подачи Qопт соответствуют точке с максимальным КПД, называют оптимальным (точка М).
Под режимом эксплуатации насоса понимается пересечение гидравлической характеристики насоса (кривая 1) с его «внешней сетью», в данном случае гидродинамической характеристикой скважины (кривая 3).
Под гидродинамической характеристикой скважины понимается совокупная характеристика работы пласта и подъемника, которая выражается графической зависимостью напора (давления) в функции дебита (подачи) (H = f (Q)).
Задача рационального выбора компоновки УЭЦН сводится к подбору такого режима насоса, когда пересечение кривых 1 и 3 будет находиться в «рабочей зоне», которая лежит на кривой 1, где . Регулирование режима возможно как изменением характеристики насоса (изменением числа оборотов, изменением числа ступеней и др.), так и изменением характеристики «внешней сети» (изменением диаметра НКТ, применением штуцеров и др.).
Погружной насос, электродвигатель, гидрозащита соединяются между собой фланцами и шпильками. Валы насоса двигателя и гидрозащита имеют на концах шлицы и соединяются между собой шлицевыми муфтами.
Гидрозащита предназначена для защиты ПЭД от проникновения в его полость пластовой жидкости и смазки сальника насоса и состоит из протектора и компенсатора.
Кабель с поверхности до погружного агрегата подводят питающий, полиэтиленовый бронированный (эластичная стальная оцинкованная лента) круглый кабель (типа КГБК), а в пределах погружного агрегата – плоский типа (КПБП).
Станция управления обеспечивает включение и отключение установки, самозапуск после появления исчезнувшего напряжения и аварийное отключение (перегрузки, короткое замыкание, колебания давления, отсутствие притока и др.).
Станции управления (ШГС-5804 для двигателей с мощностью IV до 100 кВт, КУПНА-79 для двигателей с N больше 100 кВт). Они имеют ручное и автоматическое управление, дистанционное управление с диспетчерского пункта, работают по программе.
Имеется отсекатель манифольдного типа РОМ-1, который перекрывает выкидную линию при повышении или резком снижении давления (вследствие прорыва трубопровода).
Трансформаторы регулируют напряжение питания с учетом потерь в кабеле (25 ¸ 125 В на 1000 м).
Погружные винтовые и гидропоршневые насосы. Это новые виды погружных насосов.
Винтовой насос – это тоже погружной насос с приводом от электродвигателя, но жидкость в насосе перемещается за счет вращения ротора-винта. Особенно эффективны насосы этого типа при извлечении из скважин нефтей с повышенной вязкостью.
Применяются насосы с приводом на устье скважин, производительность которых до 185 м3/сут; напор до 1830 м.
Гидропоршневой насос – это погружной насос, приводимый в действие потоком жидкости, подаваемой в скважину с поверхности насосной установкой. При этом в скважину опускают два ряда концентрических труб диаметром 63 и 102 мм. Насос опускают в скважину внутрь трубы диаметром 63 мм и давлением жидкости прижимают к посадочному седлу, находящемуся в конце этой трубы. Поступающая с поверхности жидкость приводит в движение поршень двигателя, а вместе с ним и поршень насоса. Поршень насоса откачивает жидкость из скважины и вместе с рабочей жидкостью подает ее по межтрубному пространству на поверхность.
Геофизические методы исследования. Из всех методов исследования скважин и пластов следует выделить особый комплекс геофизических методов. Они основаны на физических явлениях, происходящих в горных породах и насыщающих их жидкостях при взаимодействии их со скважинной жидкостью и при воздействии на них радиоактивного искусственного облучения или ультразвука.
Геофизические методы исследования скважин и геологического разреза на стадиях бурения этих скважин, их заканчивания, а также текущей эксплуатации дают обильную информацию о состоянии горных пород, их параметрах и об их изменениях в процессе эксплуатации месторождения и часто используются при осуществлении не только геологических, но и чисто технических мероприятий на скважинах. В силу своей специфичности, необходимости знания специальных предметов, связанных с физикой земли, горных пород, а также с ядерными процессами, эти методы исследования, их теория, техника осуществления и интерпретация результатов составляют особую отрасль знаний и выполняются геофизическими партиями и организациями, имеющими для этой цели специальный инженерно-технический персонал, оборудование и аппаратуру. Геофизические исследования скважин - это различного рода каротажи, т. е. прослеживание за изменением какой-либо величины вдоль ствола скважины с помощью спускаемого на электрокабеле специального прибора, оснащенного соответствующей аппаратурой. К ним относятся:
1. Электрокаротаж. Одним из важнейших методов является электрический каротаж скважин, который позволяет проследить за изменением самопроизвольно возникающего электрического поля в результате взаимодействия скважинной жидкости с породой, а также за изменением так называемого кажущегося удельного сопротивления этих пород. Электрокаротаж и его разновидности, такие как боковой каротаж - БК, микрокаротаж, индукционный каротаж - ИК, позволяют дифференцировать горные породы разреза, находить отметку кровли и подошвы проницаемых и пористых коллекторов, определять нефтенасыщенные пропластки и получать другую информацию о породах.
2. Радиоактивный каротаж - РК. Он основан на использовании радиоактивных процессов (естественных и искусственно вызванных), происходящих в ядрах атомов, горных пород и насыщающих их жидкостей. Существует много разновидностей РК, чувствительных к наличию в горных породах и жидкостях тех или иных химических элементов. Разновидностью РК является гамма-каротаж ГК, дающий каротажную диаграмму интенсивности естественной радиоактивности вдоль ствола скважины, что позволяет дифференцировать породы геологического разреза по этому признаку. Гамма-гамма-каротаж (ГГК) фиксирует вторичное рассеянное породами гамма-излучение в процессе их облучения источником гамма-квантов, находящихся в спускаемом в скважину аппарате. Существующие две разновидности ГГК позволяют косвенно определять пористость коллекторов, а также обнаруживать в столбе скважинной жидкости поступление воды как более тяжелой компоненты.
3. Нейтронный каротаж (НК) основан на взаимодействии потока нейтронов с ядрами элементов горных пород. Спускаемый в скважину прибор содержит источник быстрых нейтронов и индикатор, удаленный от источника на заданном (примерно 0,5 м) расстоянии и изолированный экранной перегородкой. Существует несколько разновидностей НК, как, например, нейтронный каротаж по тепловым и надтепловым нейтронам (НГ-Т и НГ-Н), которые дают дополнительную информацию о коллекторе и пластовых жидкостях.
4. Акустический каротаж (АК). Это определение упругих свойств горных пород. При АК в скважине возбуждаются упругие колебания, которые распространяются в окружающей среде и воспринимаются одним или более приемниками, расположенными в том же спускаемом аппарате. Зная расстояние между источниками колебания и приемником, можно определить скорость распространения упругих колебаний и их амплитуду, т. е. затухание. В соответствии с этим выделяется три модификации АК: по скорости распространения упругих волн, по затуханию упругих волн и АК для контроля цементного кольца и технического состояния скважины.
5. Другие виды каротажа. К другим видам относится кавернометрия, т. е. измерение фактического диаметра необсаженной скважины и его изменение вдоль ствола. Кавернограмма в сочетании с другими видами каротажа указывает на наличие проницаемых и непроницаемых пород. Увеличение диаметра соответствует глинам и глинистым породам; сужение обычно происходит против песков и проницаемых песчаников. Против известняков и других крепких пород замеряемый диаметр соответствует номинальному, т. е. диаметру долота. Кавернограммы используются при корреляции пластов и в сочетании с другими методами хорошо дифференцируют разрез, так как хорошо отражают глинистости и проницаемости разреза. Термокаротаж - изучение распределения температуры в обсаженной или необсаженной скважине. Термокаротаж позволяет дифференцировать породы по температурному градиенту, а следовательно, по тепловому сопротивлению. Кратковременное охлаждение ствола скважины или нагрев при закачке холодной или горячей жидкости позволяет получить новую информацию о теплоемкости и теплопроводности пластов. Это позволяет определить: местоположение продуктивного пласта, газонефтяной контакт, места потери циркуляции в бурящейся скважине или дефекта в обсадной колонне зоны разрыва при ГРП и зоны поглощения воды и газа при закачке.