Автор работы: Пользователь скрыл имя, 18 Октября 2011 в 11:47, реферат
Из магматического очага магма движется к поверхности Земли. При этом ее внутреннее давление и температура понижаются, начинается процесс кристаллизации и переход из жидкого в твердое состояние. Образуются магматические горные породы. Это общая схема магматического процесса. В свою очередь в нем выделяют два типа (или две ветви).
3. Гранобластовая (рис.1, 2а), а в случае листоватой или волокнистой формы кристаллов - лепuдобластовая (рис.1, 2б) и фuбробластовая (нематобластовая, рис.1, 2в). Кристаллы не идиоморфны, а неправильны. Они образуются при бластезе - росте кристаллов в твердой породе, при раскристаллизации аморфногo вещества или перекристаллизации кремневых, карбонатных, глинистых и других пород. Структура, таким образом, вторична. Она также свойственна всем метаморфическим породам: гнейсам, сланцам, амфиболитам и т.д.
4. Механоконформная (рис.1, 3), возникает при механическом приспособлении зерен друг к другу под давлением вышележащих слоев или стрессовым: более пластичные и менее крепкие зерна (слюды, обломки глин, сланцев, известняковв и т.д.) приспосабливаются к прочным (кварц, часто плагиоклазы, обломки кварцитов, кремней и др.), обжимаются вокруг них, прилегая плотно, без промежутков; прочные зерна часто вдавливаются в пластичные. Часто эти структуры конформны не полностью, так как степень механическогo приспособления бывает разной, варьирующей от 0 до 100%. Развивается структура по обломочной, раковинной и сфероагpегатной, реликты которых четко просматриваются.
Неконформнозернистые
структуры характеризуются
1. Цельноскелетные биоморфные структуры - раковинные, или ракушняковые (структурными элементами - зернами - являютcя раковины), и биогeрмные - коралловые, строматолитовые и др., кoгдa захороняются скелеты обычно прикрепляющихся организмов (рис.1, 5).
2. Сфероaгрегатные (рис.1, 6), и примыкающие к ним многoчисленные структуры в основном химическогo и биологическогo происхождения, когда структурными элементами служат обычно сферические тела - aгpeгaты мелких кристалликов или аморфные образования, сохраняющие свою первичную форму: оолитовая, бобовая, конкреционная, желваковая, окатышевая и т.д. Они широко распространены в карбонатных, фосфатных, алюминиевых, железных, марганцевых и других породах.
3. Обломочные, или кластические, структуры (рис.1, 4): породы сложены обломками кристаллов, стекла, пород, органических остатков, т.е. имеют соответственно кристалло-, витро-, лито- и биокластическую структуру. Последняя нередко называется оргaногeнно-обломочной или органогeнно-детритовой. То, что зерна - обломки, видно по их контурам, которые представляют поверхности дробления с одной или разных сторон, первично целостногo кристалла, оолита, раковины или вулканическогo стекла. Обломочные структуры свойственны всем обломочным породам, большинству глинистых и фосфоритовых, многим карбонатным, бокситовым, эффузивным и дрyгим породам. Это самые распространенные осадочные структуры: ими обладают 60-70% осадочных пород или больше.
Размер зерен —
вторая, а для обломочных пород - первостепенная
сторона структуры. Хотя еще существует
некоторый разнобой в понимании гpаниц
гpанулометрических (гpеч.гранула - зерно)
типов и классов, особенно в разных странах,
все же большинство из них понимается
одинаково или близко. Из двух основных
требований к гранулометрическим классификациям
- естественность границ и удобство в употреблении
- в существующих классификациях обычно
выполняется одно, так как в детальных
классификациях совместить их трудно.
Требование естественности гpаниц особенно
важно для обломочных пород, слагающихся
из зерен, переносившихся и откладывавшихся
индивидуально, когда проявлялись качественные
скачки между разными популяциями зерен.
К гpанулометрии кластолитов приспосабливаются
размерностные структуры и других пород,
что упрощает и унифицирует структурный
анализ осадочных пород в целом.
По размеру зерна все структуры, как и породы, прежде всего делятся на три группы: яснозернистые (зерно которых видно не вооруженным глазом), и визуально воспринимаемые как сплошные, бесструктурные: скрытозернистые и незернистые, что и обозначается соответственно: пелитоморфные, т.е. глиноподобные, землистые (например, мергели, опоки, диатомиты), и афанитовые - стекловатые по виду (обсидианы, кремни, яшмы).
Главное значение в связи с процессами образования обломочных пород имеет величина обломков; поэтому различают кластические структуры:
· грубообломочные (ранее называли псефитовые, от др.-греч. psefos — камешек, голыш, галька), с величиной зерна больше 2 или 2,5 мм;
· среднеобломочные (псаммитовые, от psammos — песок, с величиной зерна от 2,5 (2,0) до 0,05 (0,1) мм (для уточнения вместо этого термина используют: грубо-, средне-, мелкозернистые и т.д.) и
· мелкообломочные, или пелитовые (pelos— глина) — зерна размером менее 0,05 (0,1) мм.
Граница между последними 0,05 мм - предел разрешения глазом зернистости. С этой границей совпадает скачок свойств и в породах: в более тонких осадках появляется связность, резко подскакивает высота капиллярного поднятия и т.д. Естественное обоснование имеет и граница 2 мм: более крупные обломочные породы практически только литокластические, т.е. состоящие из обломков пород, а более мелкие чаще бывают кристаллокластическими, т.е. состоящими из обломков минералов.
Граница 0,0001 мм (или 0,0002 мм) также естественна, так как отмечает верхний предел коллоидных растворов, не подчиняющихся силе тяжести, имеющих один заряд для всех частиц, снятие которых вызывает коагуляцию коллоидногo раствора и осаждение. Это и предел разрешения световогo микроскопа, так как размер коллоидных частиц меньше половины длины световой волны. Некоторое обоснование раздела гравия и галек в 10 мм приводит Л.Б. Рухин (1969). Верхний предел галек (10 см) принимается без обоснования, а иногда егo отодвигают до 20 см.
Важно отмечать габитус, или облик зерна: волокнистый, листоватый, уплощенный, призматический, кубический и т.д. Свою форму имеют и сохраняют или утрачивают не только кристаллы, но и раковины, сфероагрегаты, даже обломки пород и стекла. Описываются и все искажения или невыраженности идиоморфности: неправильность (в гранобластовых структурах), ксеноморфность (у псевдоморфоз, заполняющих объем замещенногo кристалла). Обычно выдляют зерна четырех типов:
Из вторичных
изменений формы наиболее важны
окатанность и
Все метаморфические
породы обладают полнокристаллическими
структурами, так как ни в одной
из них не может сохраниться
Сообразно совершенно отличному от изверженных пород происхождению полнокристаллическая структура пород метаморфических и все характерные ее элементы обозначаются присоединением к корню структурного термина изверженных пород окончания бластовая. На основании сказанного понятно, что должны обозначать термины: гранобластовая, порфиробластовая, идиобластовый, ксенобластовый и прочее. Но имеются принципиальные отличия между структурой порфиробластовой и бластопорфировой. Наименование первой говорит о том, что структура образовалась за счет процессов перекристаллизации, второй — о формировании метаморфической породы по магматическим образованиям с порфировой или порфировидной структурой.
Для характеристики
структуры метаморфической
Наконец, весьма важна для распознавания материнской породы, из которой произошла данная метаморфическая, так называемая реликтовая (латинское relictus — оставленный, остаточный) структура, т.е. остающаяся в небольших участках метаморфической породы структура первоначальной породы. Обычно реликтовые структуры сохраняются в породах, подвергавшихся лишь низким ступеням метаморфизма. В метамагматических породах часто обнаруживаются лишь следы таких структур магматических пород, как офитовая, сферолитовая и др. В метаосадочных породах выделяются бластопсаммитовая, бластоалевролитовая и т.п. структуры. В некоторых случаях остаточные структуры сохраняются и в породах средних ступеней метаморфизма.
Существует еще одна группа структур метаморфических пород — катакластические. Породы, подвергшиеся процессам деструктуризации, в дальнейшем легче перекристаллизовываются, и возникают типичные метаморфические породы.
Текстуры, как и структуры, можно рассматривать отдельно для каждого из классов пород, но в таком случае будет довольно много повторяющегося текста. Поэтому я предпринял попытку объединить рассмотрение текстур в единый текст, уточняя по месту характерность тех или иных для определенных классов. Стало любопытно, что из этого получится.
Текстура - расположение зерен в породе - полнее всего изучается в обнажении, менее полно - в керне буровых скважин и в образцах. Текстура определяет не только многие физические свойства породы - проницаемость, крепость и раскалываемость, т.е. является самым выразительным признаком физической анизотропии породы, но и важнейшие генетические признаки, позволяющие восстанавливать динамику среды (воздушной или водной) - ее активность, характер движения (течения, волнения), eгo силу, направление и т.д. [см. Фролов, 1992]
Текстуры осадочных и вулканических пород подразделяются на поверхностные, присущие поверхностям напластования и объемные, слагающие весь объем породы. Примеры поверхностных текстур - канатные лавы, знаки ряби, трещины усыхания и т.д. После захоронения под следующим слоем осадка они могут переходить в части объемных текстур (волнистая и косая слоистость). Здесь рассматриваются только объемные текстуры. По той причине, что студенты по нашему учебному плану сначала сталкиваются с образцами пород в аудитории, а уже потом, на практике - в обнажении. И для учебных целей важнее именно объемные текстуры, которые можно наблюдать в отдельно взятых образцах.
При расположении минералов в породе без всякого порядка получается массивная текстура, встречающаяся в породах магматических, метаморфических и осадочных. Последние имеют часто слоистую текстуру. Слоистая текстура выражается в чередовании, иногда очень тонком и резком, слоев различного состава, что характерно для осадочных пород. Для большинства метаморфических пород свойственна сланцеватая или полосчатая текстура, обусловленная параллельным расположением минералов, в строении которых должно быть ясно выражено направление — линейность или пластинчатость. Флюидальная текстура эффузивных пород, напоминающая отчасти линейную текстуру кристаллических сланцев и показывающая бывшее течение магмы, наблюдается в тех породах, в которых имеются минералы призматические, могущие запечатлеть течение лавы, и не видна там, где в тех же условиях отвердевания расплавленной массы минералы являются изометричными.
По способу заполнения пространства различаются плотные и пористые текстуры. При полном заполнении минералами (в том числе стеклом) породы занимаемого ею пространства получаются плотные текстуры; в противном случае имеют место пористые текстуры и т.д. Плотная - самая распространенная текстура не только метаморфических, но и магматических пород. Пористые текстуры более свойственны эффузивным и осадочным породам. Степень пористости или ее отсутствие у плотных пород, определяется по впитыванию воды в породу, по прилипанию к языку в случае капиллярной пористости, по весу породы (объемному весу) и рыхлости. На больших глубинах и под большим давлением пористость, конечно, должна исчезнуть. Если пустоты заполнены вторичным (чаще всего) материалом, то получаются миндалекаменные текстуры.
Крепость, т.е. сопротивление разрушению (не путать с твердостью, определяемой у минералов), оценивается по тpex-, четырех- или пятибалльной шкале:
Массивная текстура, она же изотропная, хаотическая или однородная - наблюдается в породах, образующихся без влияния стресса — в метасоматических породах, в глубинных зонах метаморфизма, когда высокое литостатическое давление полностью затушевывает действие стресса.