Автор работы: Пользователь скрыл имя, 04 Ноября 2011 в 13:08, реферат
Геотехнология определяется как метод добычи цветных, редких и благородных металлов путем их избирательного растворения химическими реагентами на месте залегания и последующего извлечения образованных в зоне реакций хи-мических соединений без формирования значительных пустот и массового сдвижения вмещающих пород. К геотехнологии относят также кучное и отвальное выщелачивание металлов, хотя эти методы являются промежуточными между собственно геотехнологическим выщелачиванием – подзем-ным и гидрометаллургическим – чановым.
1. ОБЩАЯ ХАРАКТЕРИСТИКА ГЕОТЕХНОЛОГИЧЕСКИХ МЕТОДОВ 3
ОБЪЕКТЫ ПРИМЕНЕНИЯ ГЕОТЕХНОЛОГИИ 3
ПРЕИМУЩЕСТВА ГЕОТЕХНОЛОГИИ 3
ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ 4
2. ОБЗОР ТЕХНОЛОГИЧЕСКИХ СПОСОБОВ, ИСПОЛЬЗУЕМЫХ ПРИ КУЧНОМ ВЫЩЕЛАЧИВАНИИ ЗОЛОТА ИЗ РУД 7
ЦИАНИДНОЕ ВЫЩЕЛАЧИВАНИЕ 7
ТИОМОЧЕВИННОЕ (ТИОКАРБАМИДНОЕ) ВЫЩЕЛАЧИВАНИЕ 8
ТИОСУЛЬФАТНОЕ И АММИАЧНО-ТИОСУЛЬФАТНОЕ ВЫЩЕЛАЧИВАНИЕ 10
ОКИСЛИТЕЛЬНОЕ ВЫЩЕЛАЧИВАНИЕ МИНЕРАЛЬНЫМИ КИСЛОТАМИ И СОЛЯМИ 10
БАКТЕРИАЛЬНОЕ ВЫЩЕЛАЧИВАНИЕ 12
ВТОРИЧНЫЕ ИОНООБМЕННЫЕ ЯВЛЕНИЯ В ПРОЦЕССАХ ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА 15
МЕТОДЫ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ РАСТВОРОВ И СТОЧНЫХ ВОД 16
СОРБЦИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ АКТИВНЫМИ УГЛЯМИ 16
ИЗВЛЕЧЕНИЕ БЛАГОРОДНЫХ МЕТАЛЛОВ ИОНООБМЕННЫМИ СМОЛАМИ И ЭКСТРАГЕНТАМИ 17
ИСПОЛЬЗОВАНИЕ ФЕРРИТИЗИРОВАННЫХ СОРБЕНТОВ 19
ЭЛЕКТРОЛИТИЧЕСКОЕ ИЗВЛЕЧЕНИЕ ЗОЛОТА ИЗ РАСТВОРОВ 19
ЗАКЛЮЧЕНИЕ 21
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 22
Возможным заменителем цианистых растворителей золота являются кислые растворы тиомочевины. Впервые предложения об использовании тиокарбамидного выщелачивания для извлечения золота из сурьмянистых руд были высказаны в начале сороковых годов XX века. Исследования как у нас в стране, так и за рубежом показали следующие преимущества тиомочевинного растворения, по сравнению с цианированием: скорость процесса выше примерно в 10 раз, он менее подвержен воздействию со стороны ионов-примесей, меньше удельный расход и коррозионная активность реагента. Вместе с тем указывались и отрицательные моменты: тиомочевина дороже NaCN на 25%, в окислительных условиях она разлагается, имеются сложности при извлечении золота из тиомочевинных растворов активированным углем.
Тиомочевинная технология перспективна для переработки углеродсодержащих глинистых золотоносных руд, а также мышьяксодержащих. В цианистом процессе серьезные трудности вызывает наличие меди, при тиомочевинном растворении это осложнение частично снимается вследствие значительно меньшей скорости ее разложения, эффективно растворяется золото в кислых растворах в присутствии окислителя. Установлено, что наилучшим из исследованных реагентов является раствор тиомочевины с добавками серной кислоты и трехвалентного железа. При этом окислительно-восстановительный потенциал не может быть ниже 125–130 мВ (из-за осаждения золота) и выше 160–165 мВ (из-за окисления свободной тиомочевины). Стабилизация его в ходе процесса на определенном уровне может осуществляться, например, добавками сернистого газа. Эксперименты показали, что в случае тиомочевинного выщелачивания золото извлекаешься с большей полнотой, чем цианированием: 90 – 97% против 81–92%. Показана возможность использования растворов тиомочевины в замкнутом цикле с концентрацией железа не выше 10–12 г/л.
В результате промышленных испытаний установлено: тиомочевинное выщелачивание золота возможно, причем извлечение его равно или выше, чем при планировании; в случае тонкой вкрапленности золота такое выщелачивание не имеет кинетических преимуществ перед цианированием; тиомочевинная технология может оказаться рентабельной даже с низким извлечением (60%) выщелачивания углеродсодержащих руд, которые невозможно перерабатывать иными способами, она может быть использована для переработки низкосортных золотосодержащих отвалов.
В промышленном масштабе тиомочевина применяется лишь на предприятиях с очень богатым концентратом, что оправдывает затраты на реагент. В России в результате испытаний на опытных установках выявлены недостатки способа: длительность операции закисления, высокий расход кислоты, обогащение продуктивных растворов элементами-примесями и др.
Эксплуатационные затраты при тиокарбамидном выщелачивании в целом примерно на 25% меньше, чем для цианирования за счет существенно (более чем в три раза) меньших затрат на обезвреживание промышленных стоков.
Процессы
тиосульфатного и аммиачно-тиосульфатного
выщелачивания золота протекают
по следующим реакциям:
4Au + O2 + 8S2O32- + 4H+ → 4Au(S2O3) 23- + H2O,
Au + 5S2O32-
+ Cu(NH3)42+ → Au(S2O3)
23- + 4NH3 + Cu(S2O3)35-
Образующийся тиосульфатный комплекс золота очень прочный (константа диссоциации равна 10-26).
Наличие растворимой меди и сульфидов может замедлить процесс аммиачно-тиосульфатного растворения золота, если не принять специальных мер. В частности, его рекомендуется проводить в слабоокислительной среде.
Аммиачно-тиосульфатное
выщелачивание применимо к
Этот способ применим для добычи серебра и, в меньшей степени, золота. Имеется патент на селективное солянокислое выщелачивание золота, серебра, свинца, сурьмы и висмута из арсенатов. Процесс проводят при рН = 1 и с наличием в растворе железа (2–4 г/л).
Для переработки материалов, содержащих благородные металлы, рассмотрена возможность использования гидрохлорирования, имеющего некоторые преимущества, по сравнению с цианистым процессом: большая концентрация окислителя (молекулярный хлор) в растворе обусловливает высокую скорость процесса; возможность получения солянокислых растворов, из которых удобно выделять золото электролизом, переработки ряда упорных для цианирования золотосодержащих материалов, в том числе углистых, медистых, мышьяковистых и других, а также разделения золота и серебра при их осаждении из солянокислых растворов.
Экологически чистый способ извлечения благородных металлов из руд, в том числе карбонатных, включает их обработку водным раствором, содержащим хлоридные и гипохлоридные ионы, восстановление металлов цементацией, регенерацию ионов гипохлорита электрохимическим способом и повторное использование выщелачивающего раствора. Гипохлорирование применяется для предварительной обработки углеродсодержащих золотых руд перед цианированием, чтобы извлечь золото из шлака, обогащенного сурьмой.
В опытно-промышленных масштабах исследовано извлечение золота и серебра из анодных шламов электролиза меди с применением смеси концентрированных кислот: 1 объем азотной и 3 – соляной.
Кроме того, теоретически и экспериментально прорабатываются варианты выщелачивания золота иодидными, тиоцианатными растворами, а также раствором хлорида меди.
В последнее время в США ведутся исследования по сорбционному извлечению золота из пульпы с помощью активного угля, обладающего магнитными свойствами. Этот способ позволяет селективно извлекать золото в присутствии таких примесей как As, Sb и др. Ввиду того, что большинство руд содержит магнетит в количестве 0.2–3%, необходима предварительная магнитная сепарация руды.
Многие
из перечисленных методов
Существенная интенсификация процесса выщелачивания достигается в присутствии бактерий. Например, тионовые бактерии Thiobacillus ferrooxidans могут применяться для выщелачивания меди, никеля, цинка, мышьяка, кадмия, золота и других металлов. В России и Канаде разрабатываются технологии бактериального выщелачивания мышьяка и вскрытия тонковкрапленного золота из упорных золотосодержащих концентратов перед их цианированием. Это позволяет исключить дорогостоящий процесс обжига, загрязняющий атмосферу ядовитыми соединениями мышьяка.
Упорные
руды характеризуются
2FeS2
+
2FeAsS + 5O2 = Fe2O3 + As2O3 + 2SO2.
Бактериальное выщелачивание позволяет решить проблему переработки труднообогатимых руд.
Проводится
поиск новых видов
Пионерами исследований по бактериальному выщелачиванию золота были институт Пастера (Франция) и университет г. Дакар (Сенегал). Информация об этих работах появилась в печати в 60-х годах XX века.
Бактериальные методы извлечения золота из руд базируются на результатах изучения микрофлоры крупных золоторудных месторождений, позволивших выделить культуры доминирующих видов бактерий и грибов. Установлено, что повышенной активностью в процессе растворения золота обладают представители родов Bacillus, Bacterium, Chromobacterium, а также полученные на основе индуцированного мутагенеза штаммы бактерий Bac. mesentericus niger 12 и 129.
Микроскопические грибы, в отличие от бактерий, способны аккумулировать золото из растворов. Наиболее эффективны представители родов Aspergillus niger и Aspergillus oryzae.
В процессах бактериального выщелачивания золота определяющая роль принадлежит продуктам микробного синтеза: аминокислотам, пептидам, белкам и нуклеиновым кислотам. Углеводы в растворении золота участия не принимают. Экспериментально установлено, что в кислой среде белки осаждают золото, а в щелочной – растворяют. Солерастворимые белки микробного синтеза существенно лучше действуют на золото, чем глобулин животного происхождения. Реакционная способность пептидов зависит от их молекулярного веса: чем он меньше, тем выше растворимость золота.
В результате исследований факторов, регулирующих выщелачивание золота продуктами метаболизма гетеротрофных микроорганизмов, определено, что начальной стадией процесса является биосинтез золоторастворяющих соединений, который рекомендуется проводить в течение 2–3 суток при рН среды 5.5–6.5, температуре 30-35˚С и загрузке 3–4-х суточного посевного материала в количестве 4–5%. Основной процесс выщелачивания золота следует проводить при рН 9–10 в присутствии окислителя металла.
Исследованы механизм и кинетика растворения золота в водно-щелочных смесях малоно-нитрила. Показано, что наибольшая эффективность его проявляется в области рН 10 – 11, концентрация золота может достигать 65–70 мг/л, но уже при рН > 11.5 растворимость золота резко падает, а в кислой среде она практически не происходит.
Разложение золота существенно возрастает при использовании модифицированных гуминовых кислот, полученных путем нитрирования и сульфирования природных гуматов, а концентрация достигает 48–50 мг/л, что в 15–16 раз выше, чем с природными гуминовыми кислотами.
Для кучного выщелачивания золота аминокислотами микроорганизмов смонтирована установка и проведены испытания на песчаной руде (0.75 г/т Au) крупностью –300 +0 мм. Наибольшей величины концентрация золота в продуктивных растворах достигла в первые 5–6 суток. При средней скорости фильтрации 12–15 л/т * сутки за 12 суток было извлечено 46.7% золота и израсходовано 0.6 кг аминокислот, 0.4 кг перманганата калия и 4 кг гидроксида натрия на тонну руды.
Одной из наиболее активных по отношению к золоту группой бактерий является разновидность, относящаяся к виду Aeromonas. И. Парес, изучавший бактериальное выщелачивание золота, пришел к следующим выводам: наиболее сильной растворяющей способностью обладают бактерии, отобранные на самих золотоносных месторождениях; растворение Au осуществляется в несколько этапов (скрытая фаза, фаза нарастания интенсивности выщелачивания и стабильная фаза), примерно через 12 месяцев интенсивность выщелачивания резко снижается; бактерии, активно действующие на золото, разрушаются обычными микроорганизмами, живущими в воздухе; на растворение золота в числе других факторов большое влияние оказывает состав питательной среды.
В
Иркутском государственном