Цитология

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 20:06, лекция

Краткое описание

Клетка – элементарная структурная, функциональная и генетическая единица в составе всех живых организмов. Организм взрослого человека состоит приблизительно из 1013 клеток, которые подразделяются более чем на 200 типов, существенно различающихся по своим структурным и функциональным особенностям, причём морфологическая характеристика клетки варьирует в зависимости от её функции. Вместе с тем, клетки всех типов характеризуются сходством общей организации и строения важнейших компонентов. Процесс, в ходе которого клетки приобретают свои структурные и функциональные свойства и особенности, известен как клеточная дифференцировка.

Содержимое работы - 1 файл

ЦИТОЛОГИЯ.docx

— 30.12 Кб (Скачать файл)

ЦИТОЛОГИЯ

Лекция 1.

Общие принципы структурно-функциональной организации клетки и её компоненты. Плазмолемма, её структура и функции. Межклеточные контакты. Включения. Неклеточные  структуры.

Клетка – элементарная структурная, функциональная и генетическая единица в составе всех живых организмов. Организм взрослого человека состоит приблизительно из 1013 клеток, которые подразделяются более чем на 200 типов, существенно различающихся по своим структурным и функциональным особенностям, причём морфологическая характеристика клетки варьирует в зависимости от её функции. Вместе с тем, клетки всех типов характеризуются сходством общей организации и строения важнейших компонентов. Процесс, в ходе которого клетки приобретают свои структурные и функциональные свойства и особенности, известен как клеточная дифференцировка.

Компоненты клетки. Каждая клетка состоит из двух основных компонентов – ядра ицитоплазмы.

Цитоплазма отделена от внешней среды плазматической мембраной (плазмолеммой) и содержит органеллы и включения, погруженные в клеточный матрикс (цитозоль, гиалоплазма).

Органеллы – постоянные компоненты цитоплазмы, имеющие характерную структуру и специализированные на выполнении определенных функций в клетке.

Включения – непостоянные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток.

Ядро включает в себя следующие компоненты: ядернуюоболочкухроматинядрышко иядерный матрикс (нуклеоплазму).

Плазмолемма

Все клетки эукариотических организмов имеют пограничную мембрану – плазмолемму (цитолеммаплазматическая мембрана, внешняя клеточная мембрана). Плазмолемма играет роль полупроницаемого селективного барьера, и с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой – обеспечивает её связь с этой средой.

Функции плазмолеммы:

·        поддержание формы клетки;

·        регуляция переноса веществ и частиц в цитоплазму и из неё;

·        распознавание данной клеткой других клеток и межклеточного вещества, прикрепление к ним;

·        установление межклеточных контактов и передача информации от одной клетки к другой;

·        взаимодействие с сигнальными молекулами (гормоны, медиаторы, цитокины) в связи с наличием на поверхности плазмолеммы специфических рецепторов к ним;

·        осуществление движения клетки благодаря связи плазмолеммы с сократимыми элементами цитоскелета.

Структура плазмолеммы. Толщина плазмолеммы варьирует от 7,5 до 10 нм. Под электронным микроскопом плазмолемма имеет вид трёхслойной структуры, представленной двумя электронно-плотными слоями, которые разделены светлым слоем.

Химический состав плазмолеммы: липиды (фосфолипиды, холестерин), белки, олигосахариды, ковалентно связанные с некоторыми из этих липидов и белков.

Молекулярное  строение плазмолеммы описывается жидкостно-мозаичной моделью, согласно которой она состоит из липидного бислоя, в который погружены молекулы белков.

Липидный бислой представлен преимущественно молекулами фосфолипидов (таких как лецитин и цефалин), состоящими из двух длинных неполярных (гидрофобных) цепей жирных кислот и полярной (гидрофильной) головки. В состав большинства мембран входит также холестерин. В мембране гидрофобные цепи обращены внутрь бислоя, а гидрофильные головки – кнаружи. Состав липидов каждой из половин бислоя различен. Некоторые липиды (гликолипиды) связаны с олигосахаридными цепями, которые выступают за пределы наружной поверхности плазмолеммы, придавая ей асимметричность. Электронно-плотные слои соответствуют расположению гидрофильных участков липидных молекул, а разделяющий их светлый слой – гидрофобным.

Мембранные белки составляют более 50% массы мембран. Они удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов. Белки обеспечивают специфические свойства мембраны и играют различную биологическую роль: структурных молекулферментовпереносчиков и рецепторов. Мембранные белки подразделяются на 2 группы: интегральные и периферические. Периферические белки обычно находятся вне липидного бислоя и непрочно связаны с поверхностью мембраны. Интегральные белки представляют собой белки, либо полностью (собственно интегральные белки), либо частично (полуинтегральные белки) погруженные в липидный бислой. Часть белков целиком пронизывает всю мембрану (трансмембранные белки); они обеспечивают каналы, через которые транспортируется мелкие водорастворимые молекулы и ионы по обе стороны мембраны. Другие белки, которые мозаично распределены в пределах клеточной мембраны, могут иметь липидные (липопротеины) или углеводные (гликопротеины и протеогликаны) боковые цепи. Цепочки олигосахаридов, связанные с белковыми частицами (гликопротеины) или с липидами (гликолипиды), могут выступать за пределы наружной поверхности плазмолеммы, и образуют основу гликокаликса, надмембранного слоя, который выявляется под электронным микроскопом в виде рыхлого слоя умеренной электронной плотности. Углеводные участки придают клетке отрицательный заряд и являются важным компонентом специфических молекул – рецепторов. Рецепторы обеспечивают такие важные процессы в жизнедеятельности клеток, как распознавание других клеток и межклеточного вещества, адгезивные взаимодействия, ответ на действие белковых гормонов, иммунный ответ и.т.д. Гликокаликс является также местом концентрации многих ферментов, часть которых может образовываться не самой клеткой, а лишь адсорбироваться в слое гликокаликса.

Интегральные белки не фиксированы жестко в пределах плазмолеммы, и могут перемещаться путем диффузии в плоскости клеточной мембраны.

Плазмолемма – место обмена материала между клеткой и  окружающей клетку средой.Мембранный транспорт может включать однонаправленный перенос молекулы какого-то вещества или совместный транспорт двух различных молекул в одном или противоположных направлениях.

Механизмы мембранного  транспорта:

·        пассивный транспорт;

·        облегченный транспорт;

·        активный транспорт;

·        эндоцитоз (пиноцитоз; фагоцитоз; рецепторно-опосредованный эндоцитоз);

Пассивный транспорт – это процесс, который не требует затрат энергии, так как перенос мелких водорастворимых молекул (О2, Н2О, СО2) и части ионов осуществляется путем диффузии. Такой процесс малоспецифичен, и зависит от градиента концентрации транспортируемой молекулы.

Облегченный транспорт также зависит от градиента концентрации и обеспечивает перенос более крупных гидрофильных молекул, таких как молекулы глюкозы и аминокислот. Этот процесс пассивный, но требует присутствия белков-переносчиков, обладающих специфичностью в отношении транспортируемых молекул.

Активный транспорт – процесс, при котором перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента. Для осуществления этого процесса необходимы затраты энергии, которая высвобождается за счет расщепления АТФ. Примером активного транспорта служит натриево-калиевый насос: посредством белка-переносчикаNa+-K+-АТФ-азы ионы Naвыводятся из цитоплазмы, а ионы Кодновременно переносятся в неё.

Эндоцитоз – процесс транспорта макромолекул из внеклеточного пространства в клетку. При этом внеклеточный материал захватывается в области впячивания (инвагинации) плазмолеммы, края впячивания затем смыкаются, и таким образом формируется эндоцитозный пузырек (эндосома), окруженный мембраной. Разновидностями эндоцитоза являются пиноцитоз, фагоцитоз, рецепторно-опосредованный эндоцитоз.

Пиноцитоз – захват и поглощение клеткой жидкости вместе с растворимыми в ней веществами. Он подразделяется на микропиноцитоз (диаметр пиноцитозных пузырьков - 70-100 нм) и макропиноцитоз (диаметр пиноцитозных пузырьков – 0.2-0.3 мкм). В цитоплазме клетки пиноцитозные пузырьки обычно сливаются с первичными лизосомами, и их содержимое подвергается внутриклеточной обработке.

Фагоцитоз – захват и поглощение клеткой плотных частиц (бактерии, простейшие, грибки, поврежденные клетки, некоторые внеклеточные компоненты). Фагоцитоз обычно сопровождается образованием выпячиваний цитоплазмы (псевдоподии, филоподии), которые охватывают плотный материал. Края цитоплазматических отростков смыкаются, и образуются фагосомы. Фагосомы сливаются с лизосомами, образуя фаголизосомы, где ферменты лизосом переваривают биополимеры до мономеров.

Рецепторно-опосредованный эндоцитоз. Рецепторы ко многим веществам, таким как белковые гормоны, иммуноглобулины, факторы роста расположены на клеточной поверхности. Эти рецепторы связываются с лигандами (молекулами поглощаемого вещества с высоким сродством к рецептору). Рецепторы, перемещаясь, могут скапливаться в особых областях, называемых окаймленными ямками. Вокруг таких ямок и образующихся из них окаймленных пузырьков образуется сетевидная оболочка, состоящая из нескольких полипептидов, главный из которых белок клатрин. Окаймленные эндоцитозные пузырьки переносят комплекс рецептор-лиганд внутрь клетки. В дальнейшем, после поглощения веществ, комплекс рецептор-лиганд расщепляется, и рецепторы возвращаются в плазмолемму. С помощью окаймленных пузырьков транспортируются иммуноглобулины, факторы роста, липопротеины низкой плотности (ЛНП).

Информация о работе Цитология