Автор работы: Пользователь скрыл имя, 25 Февраля 2012 в 09:53, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Системный анализ".
Закономерность потенциальной эффективности предполагает возможность и необходимость своевременного изменения системы в связи с необходимостью реализации новых целевых требований, обусловленных средой. Она реализуется в количественной или качественной оценке надежности, помехоустойчивости, управляемости и других качествах системы. При создании социально-экономических систем необходимо учитывать закономерности их функционирования и развития. К ним, в первую очередь, относятся: историчность и самоорганизация.
Историчность. В условиях динамичной среды любая система не может быть неизменной, она не только функционирует, но и развивается, проходит стадии становления, стабильного существования,старения и разрушения. Поэтому уже на стадии создания сложных систем должны рассматриваться не только вопросы создания и обеспечения их развития, но и вопросы о ликвидации системы, когда ее функционирование перестает быть целесообразным. Закономерность историчности требует, чтобы время являлось непременной характеристикой системы.
Самоорганизация является одной из наиболее важных наблюдаемых черт сложных социально-экономических систем и характеризует их способность противостоять воздействию негативных факторов, адаптироваться к внешним воздействиям, изменять при необходимости свою структуру. В основе этой закономерности лежит сочетание и взаимодействие двух противоречивых тенденций. С одной стороны, для любой системы свойственно стремление к распаду, разделению. Но, с другой стороны, наблюдается стремление развития в направлении объединения с другими системами и перехода на более высокий иерархический уровень. Обе тенденции присущи всем социально-экономическим системам. В иерархических системах в зависимости от преобладания одной из них система любого уровня иерархии может развиваться в направлении к более высокому уровню и даже переходить на него, или, напротив, может происходить процесс упадка и перехода системы на более низкий уровень развития.
Закономерности проявляются в свойствах систем, рациональное использование которых позволяет находить пути разрешения проблем и принимать рациональные решения. К сожалению, в большинстве работ, раскрывающих сущность системного подхода и методологию системного анализа, многие свойства систем не рассматриваются, что ведет к недостаточной глубине системного анализа. Исключение составляет работа Б.АРайзберга и Р.А. Фатхутдинова "Управление экономикой", в которой свойства систем представлены в полном объеме, классифицированы и объединены в четыре группы:
- свойства, характеризующие сущность и сложность системы;
- свойства, характеризующие связь системы с внешней средой;
- свойства, характеризующие методологию целеполагания системы;
- свойства, характеризующие параметры функционирования и развития системы.
16 Классификация систем
Системы могут быть классифицированы по следующим признакам: природа элементов, роль человека в создании системы, степень участия людей в реализации управляющих воздействий, степень взаимодействия с внешней средой, уровень сложности, характер взаимосвязей между элементами системы, степень организованности, степень управляемости, уровень централизации, целеполагание, вид отображаемого объекта, реакция на возбуждающее воздействие.
В зависимости от природы элементов различают реальные (физические) и абстрактные системы. Реальные (физические) системы представляют объекты, состоящие из материальных элементов. Среди них могут быть механические, энергетические, биологические, природные, социальные и другие. Абстрактные системы состоят из элементов, не имеющих прямых аналогов в реальном мире. Они создаются путем мысленного отвлечения от тех или иных сторон, свойств, связей, реальных объектов и являются результатом творческой деятельности человека.
В зависимости от роли человека в создании систем различают естественные и искусственные системы. Естественные системы созданы и функционируют без участия человека. Такие системы, как правило, обладают свойством адаптации, то есть способностью реагировать на воздействие окружающей среды так, чтобы получить благоприятные результаты для деятельности системы. Системы подобного типа имеют как бы заранее запланированное "конечное состояние", и их поведение таково, что они достигают этого состояния, несмотря на неблагоприятные условия окружающей среды.
Искусственные системы созданы человеком, и им присущи многие свойства естественных систем. Вместе с тем, существуют дополнительные свойства искусственных систем, например, совместимость и оптимизация. Под совместимостью понимается согласованность характеристик независимых систем при их совместной деятельности. Системы могут быть совместимыми друг с другом в одном отношении и несовместимыми в другом. Оптимизация означает приспособление системы к окружающей среде, в результате которого обеспечивается наилучшее функционирование системы в определенном отношении, то есть в одних отношениях она может быть оптимальна, в других - нет. Поэтому важнейшим направлением анализа искусственных систем является определение критериев оптимальности функционирования и их приоритетности.
По степени участия людей в реализации управляющих воздействий выделяют технические, человеко-машинные и организационные системы.
К техническим относятся системы, которые функционируют без участия человека. Это системы автоматического управления (регулирования), представляющие собой комплексы устройств для автоматического изменения координат объекта управления с целью поддержания желаемого режима его работы. Они могут быть как адаптивными, то есть приспосабливающимися к изменению внешних и внутренних условий в процессе работы путем изменения своих параметров или структуры для достижения требуемого качества функционирования, так и неадаптивными. Человеко-машинные системы предполагают, что деятельность человека сопряжена с техническими устройствами, причем окончательное решение принимает человек, а средства автоматизации лишь помогают ему в обосновании правильности этого решения. К организационным системам относятся социальные системы - группы, коллективы людей, общество в целом.
По степени взаимодействия с внешней средой различают закрытые и открытые системы. Закрытая система отличается тем, что в нее не поступает и из нее не выделяется энергия, масса и информация и, следовательно, она изолирована от внешней среды и ее компоненты не меняются. Открытая система имеет такие отличительные черты, как способность обмениваться со средой массой, энергией и информацией. Закрытость и открытость системы имеют относительный характер и могут меняться в процессе ее развития. По степени сложности можно выделить простые, большие, сложные и очень сложные системы. Простые системы характеризуются малым числом внутренних связей и легкостью математического описания. Большая система - это система, не наблюдаемая единовременно с позиции одного наблюдателя либо во времени, либо в пространстве, либо в других параметрах, и которая не может рассматриваться иначе как в качестве совокупности априорно выделенных подсистем. Для исследования большой системы необходимо последовательно рассматривать ее по частям, строя ее подсистемы по иерархическим уровням. Сложная система имеет разветвленную структуру и разнообразные внутренние связи, которые поддаются описанию. К ним в первую очередь относятся закрытые системы, построенные для решения многоцелевых задач и отражающие разные стороны характеристики объекта, краткосрочные научно-технические и социально-экономические проблемы. К очень сложным системам относятся следующие: имеющие разные, трудно сравнимые аспекты характеристик объекта; построенные для решения долгосрочных многоцелевых программ; для описания которых необходимо использование нескольких языков; не поддающиеся непосредственному математическому описанию ввиду исключительного многообразия и сложности связей; описание которых включает взаимосвязанный комплекс разных моделей; долгосрочные научно-технические и социально-экономические проблемы.
В зависимости от характера взаимосвязей между элементами системы делятся на детерминированные и вероятностные. Детерминированной считается система, в которой составные части взаимодействуют точно предвиденным образом и если известно предыдущее состояние, то безошибочно можно предсказать ее последующее состояние. Вероятностная система имеет неопределенный характер развития, для нее невозможно сделать точного детального предсказания и любое предсказание относительно поведения такой системы не может выйти из логических рамок вероятностных категорий, при помощи которых это поведение описывается
Управляемые системы - это системы, способные изменить свое развитие и движение, переходить в различные состояния под влиянием управляющих воздействий. В них всегда присутствует орган, осуществляющий функции управления. Управляемые системы иерархичны, то есть имеют многоступенчатое построение, при котором функции управления распределяются между соподчиненными частями системы. Такая система постоянно находится в движении, ей присущ динамический характер.
Класс самоорганизующихся систем характеризуется стохастичностью, непредсказуемостью поведения, нестабильностью отдельных параметров, способностью адаптироваться к изменяющимся условиям среды. Системы подобного типа имеют как бы заранее запланированное "конечное состояние", и их поведение направлено на то, чтобы достичь этого состояния, несмотря на неблагоприятные условия окружающей среды. Моделирование самоорганизующихся систем наиболее сложно в связи с ограниченностью применения математических моделей и сложностью доказательства адекватности их применения. Накопление информации об объекте, как правило, носит многошаговый характер.
В зависимости от уровня централизации различают централизованные и децентрализованные системы. Централизованной называется система, в которой некоторый элемент (подсистема) играет главную, доминирующую роль в ее функционировании и его небольшие изменения вызывают значительные изменения всей системы. Децентрализованная система не имеет главной подсистемы. В ней важнейшие подсистемы имеют приблизительно одинаковую ценность и построены не вокруг центральной подсистемы, а соединены между собой последовательно или параллельно.
17 Основополагающие компоненты системного анализа
Разработка методики и формирование научного инструментария системного анализа должно базироваться на следующих основополагающих моментах:
1. Наличие цели. Необходимость исследования определяется наличием проблемы и цели, которую нужно достичь для того, чтобы решить проблему.
2. Наличие альтернативных концепций исследования. Исследование проводят в условиях, когда чаще всего имеется более одного способа такого исследования и каждый из них характеризуется определенным набором параметров эффекта.
3. Наличие ограничивающих факторов. Практически всегда существуют факторы, ограничивающие процесс исследования. Условно их можно разделить на три группы:
- технические факторы, определяющиеся техническими характеристиками объектов исследования;
- экономические факторы, связанные с ресурсами;
- социальные факторы, которые выражают требования общечеловеческих ценностей, этики и морали.
Содержание процесса разработки методики системного исследования состоит в следующем:
- определяют цели исследования и ограничения по времени и ресурсам;
- устанавливают требования к результату исследования по полноте отражения свойств объекта, по измерению результатов, точности и достоверности измерения;
- устанавливают наличие и тип данных о системе управления, объекте и внешней среде;
- оценивают возможность получения дополнительных данных каждого типа в процессе исследований;
- определяют множество методик, применимых при существующих и возможных данных;
- из числа применимых методик отбирают подмножество рациональных методик, позволяющих достичь поставленных целей исследования;
- формулируют критерий - правило выбора наилучшего, в определенном смысле, метода из ряда рациональных;
- вычисляют значение критерия для каждой из рациональных методик;
- выбирают наилучшую, оптимальную с позиций принятого критерия, методику.
Результат системного анализа - это, прежде всего, устойчивое решение, не создающее дальнейших противоречий, либо сводящее их к минимуму путем принципиального разрешения проблемы или создания алгоритма их динамической саморегуляции в дальнейшем по некоторому критерию. Эффективно решить сложную проблему - это, прежде всего, выбрать схему-решение и успешно реализовать ее. Две основные причины, могущие помешать решению проблемы. Во-первых, отсутствие необходимых для решений ресурсов, а, во-вторых, отсутствие самой схемы-решения.
Особенностью всех методик системного анализа является сочетание в них формальных методов и неформализованного экспертного знания. Последнее помогает найти пути решения проблемы, не содержащиеся в формальной модели, и на этой основе развивать модель и весь процесс поиска решений.
На эффективность процесса познания существенное влияние оказывает выбор методики системного анализа. Это обусловлено тем, что объекты или модели представлены в виде сложных систем и их исследование требует, во-первых, привлечения специалистов различных областей знаний, во-вторых, организации процесса коллективной выработки решения с использованием различных методов анализа и со сменой этих методов при необходимости и по мере познания объекта. Рациональная методика, используя определенный алгоритм, должна позволить последовательно продвигаться к решению проблемы.