Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 15:08, курсовая работа
Целью курсовой является рассмотрение методов изучения экономических процессов и явлений.
Задачи курсовой работы: мы рассмотрим методологию в теории, проведем анализ, а также рассмотрим пути совершенствования данной темы.
Введение
1. Теория изучения методов экономических процессов и явлений
1.1 Основные понятия
1.2 Характеристика основных приемов и методов экономического анализа
1. Анализ методологии
2.1 Понятие и виды
2.2 Методика факторного анализа
3. Пути совершенствования
Заключение
Библиография
Используя исторический метод, экономика исследует хозяйственные процессы и явления в той последовательности, в которой они в самой жизни возникали, развивались и сменялись одни другими. Такой подход позволяет конкретно и наглядно представить особенности различных экономических систем.
Исторический метод показывает, что в природе и обществе развитие идет от простого к сложному. Применительно к предмету экономики это означает, что во всей совокупности экономических явлений и процессов необходимо выделить в первую очередь наиболее простые, возникающие раньше других и составляющие основу возникновения более сложных. Например, в анализе рынка такое экономическое явление -- обмен товаров.
Экономическим процессам и явлениям присуща качественная и количественная определенность. Поэтому экономическая теория (политическая экономия) широко использует математические и статистические приемы и средства исследования, которые позволяют выявить количественную сторону процессов и явлений хозяйственной жизни, их переход в новое качество. При этом широко применяется вычислительная техника. Особую роль здесь играет метод экономико-математического моделирования. Данный метод, являясь одним из системных методов исследования, позволяет в формализованной форме определять причины изменений экономических явлений, закономерности этих изменений, их последствия, возможности и издержки влияния, а также делает реальным прогнозирование экономических процессов. С помощью этого метода создаются экономические модели.
Экономическая модель -- это формализованное описание экономического процесса или явления, структура которого обусловлена его объективными свойствами и субъективным целевым характером исследования.
В связи с построением моделей важно отметить роль функционального анализа в экономической теории.
Функции -- это переменные величины, зависящие от других переменных величин.
Функции встречаются в нашей повседневной жизни, и мы чаще всего не осознаем это. Они имеют место в технике, физике, геометрии, химии, экономике и т.д. Применительно к экономике, например, можно отметить функциональную связь между ценой и спросом. Спрос зависит от цены. Если повышается цена на товар, величина спроса на него при прочих равных условиях уменьшается. При этом цена является независимой переменной, или аргументом, а спрос -- зависимой переменной, или функцией. Таким образом, можно кратко сказать, что спрос есть функция цены. Но спрос и цена могут меняться местами. Чем выше спрос, тем выше при прочих равных условиях цена. Следовательно, цена может быть функцией спроса.
Экономико-математическое моделирование как метод экономической теории получил широкое распространение в XX в. Однако элемент субъективности в построении экономических моделей иногда ведет к ошибкам. Лауреат Нобелевской премии французский экономист Морис Алле писал 1989 г., что в течение 40 лет экономическая наука развивалась в ошибочном направлении: в сторону совершенно искусственных и оторванных от жизни математических моделей с преобладанием математического формализма, что представляет собой, по сути дела, большой шаг назад.
Большинство моделей, принципов экономической теории можно выразить графически, в виде математических уравнений, поэтому при изучении экономической теории важно знать математику и уметь составлять и читать графики.
Графики -- это изображение зависимости между двумя и более переменными.
Зависимость может быть линейной (т.е. постоянной), тогда график представляет собой прямую линию, расположенную под углом между двумя осями -- вертикальной (ее обычно обозначают буквой Y) и горизонтальной (X).
Если линия графика идет слева направо по нисходящей, то между двумя переменными существует обратная связь (так, по мере снижения цен на товар обычно растет объем его продажи). Если линия графика идет по восходящей, то связь прямая (так, по мере роста издержек производства товара обычно растут цены на него -- ). Зависимость может быть нелинейной (т.е. изменяющейся), тогда график приобретает форму кривой линии (так, по мере уменьшения инфляции безработица имеет тенденцию к увеличению -- кривая Филлипса, ).
В рамках графического подхода широко применяются диаграммы -- рисунки, показывающие соотношение между показателями. Они могут быть круговыми, столбиковыми и др.
Схемы наглядно демонстрируют показатели моделей и их взаимосвязи. При анализе экономических проблем часто используют позитивный и нормативный анализ. Позитивный анализ дает нам возможность увидеть экономические явления и процессы такими, какие они есть на самом деле: что было или что может быть. Позитивные утверждения не обязательно должны быть верными, но любой спор относительно позитивного утверждения можно решить проверкой фактов. Нормативный анализ основан на исследовании того, что и как должно быть. Нормативное утверждение чаще всего выводится из позитивного, но объективные факты не могут доказать его истинность или ложность. При нормативном анализе выносятся оценки -- справедливо или несправедливо, плохо или хорошо, допустимо или недопустимо.
2.2 Методика факторного анализа
Все явления и процессы хозяйственной деятельности предприятий находятся во взаимосвязи и взаимообусловленности. Одни из них непосредственно связаны между собой, другие косвенно. Отсюда важным методологическим вопросом в экономическом анализе является изучение и измерение влияния факторов на величину исследуемых экономических показателей.
Под экономическим факторным анализом понимается постепенный переход от исходной факторной системы к конечной факторной системе, раскрытие полного набора прямых, количественно измеримых факторов, оказывающих влияние на изменение результативного показателя. По характеру взаимосвязи между показателями различают методы детерминированного и стохастического факторного анализа.
Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер.
Основные свойства детерминированного подхода к анализу: построение детерминированной модели путем логического анализа; наличие полной (жесткой) связи между показателями; невозможность разделения результатов влияния одновременно действующих факторов, которые не поддаются объединению в одной модели; изучение взаимосвязей в краткосрочном периоде. Различают четыре типа детерминированных моделей:
Аддитивные модели представляют собой алгебраическую сумму показателей и имеют вид
.
К таким моделям, например, относятся показатели себестоимости во взаимосвязи с элементами затрат на производство и со статьями затрат; показатель объема производства продукции в его взаимосвязи с объемом выпуска отдельных изделий или объема выпуска в отдельных подразделениях.
Мультипликативные модели в обобщенном виде могут быть представлены формулой
.
Примером мультипликативной модели является двухфакторная модель объема реализации
,
где Ч - среднесписочная численность работников;
CB - средняя выработка на одного работника.
Кратные модели:
.
Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:
,
где ЗТ - средний запас товаров; ОР - однодневный объем реализации.
Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:
Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.
Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.
Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.
Если исходная факторная модель
, а ,
то модель примет вид
.
Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:
.
Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.
.
Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило, качественных, на составляющие; при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.
Построение факторной модели - первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.
Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать - значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.
В общем виде применение способа цепных постановок можно описать следующим образом:
где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;
a1 , b1, c1 - фактические значения факторов;
ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.
Общее изменение Dу=у1-у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:
Преимущества данного способа: универсальность применения, простота расчетов.
Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.
Под количественным факторами при анализе понимают те, которые выражают количественную определенность явлений и могут быть получены путем непосредственного учета (количество рабочих, станков, сырья и т.д.).
Качественные факторы определяют внутренние качества, признаки и особенности изучаемых явлений (производительность труда, качество продукции, средняя продолжительность рабочего дня и т.д.).
Способ абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора способом разниц определяется как произведение отклонения изучаемого фактора на базисное или отчетное значение другого фактора в зависимости от выбранной последовательности подстановки:
Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных и смешанных моделях вида у = (а - в) . с. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.
Для мультипликативных моделей типа у = а . в . с методика анализа следующая: находят относительное отклонение каждого факторного показателя:
определяют отклонение результативного показателя у за счет каждого фактора
Интегральный метод позволяет избежать недостатков, присущих методу цепной подстановки, и не требует применения приемов по распределению неразложимого остатка по факторам, т.к. в нем действует логарифмический закон перераспределения факторных нагрузок. Интегральный метод позволяет достигнуть полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям. Операция вычисления определенного интеграла решается с помощью ПЭВМ и сводится к построению подынтегральных выражений, которые зависят от вида функции или модели факторной системы.
2. Пути совершенствования
Экономическая теория является методологическим фундаментом целого комплекса наук: отраслевых (экономика торговли, промышленности, транспорта, строительства и т. д.); функциональных (финансы, кредит, маркетинг, менеджмент, прогнозирование и др.); межотраслевых (экономическая география, демография, статистика и др.). Экономическая теория - одна из общественных наук, наряду с историей, философией, правом и др. Она призвана раскрыть одну часть социальных явлений в жизнедеятельности человека, наука права - другую, наука нравственности - третью и т.д., и только совокупность теоретических, социальных и исторических наук в состоянии объяснить функционирование общественной жизни. Экономическая теория учитывает знания, заложенные в конкретных экономических науках, а также социологии, психологи, истории и др., без учета которых полученные ею выводы могут оказаться ошибочными.
Связь экономической теории с другими экономическими науками в самом общем виде может быть представлена в виде следующей схемы (схема 1).
| |
Схема 1 |
|
|
|
|
|
Практическая значимость экономической теории (известная формула О. Конта) в том, что знание ведет к предвидению, а предвидение - к действию. Экономическая теория должна лежать в основе экономической политики, а через нее - пронизывать область хозяйственной практики. Действие (практика) ведет к знанию, знание - к предвидению, предвидение - к правильному действию. Экономическая теория - это не набор правил о том, как стать богатым. Она не дает готовых ответов на все вопросы. Теория - лишь инструмент, способ осмысления экономической действительности. Владение этим инструментом, знание основ экономической теории может помочь каждому сделать правильный выбор во многих жизненных ситуациях. Поэтому не нужно останавливаться на достигнутом знании, а постоянно искать пути совершенствования этих знаний.
Информация о работе Методология исследования экономических процессов и явлений