Эконометрическое моделирование

Автор работы: Пользователь скрыл имя, 11 Марта 2011 в 14:20, курсовая работа

Краткое описание

Цель эконометрики – эмпирический вывод экономических законов.

Задачи эконометрики – построение экономических моделей и оценивание их параметров, проверка гипотез о свойствах экономических показателей и формах их связи.

Содержание работы

Введение……………………………………………………………………...2

Исходные данные……………………………………………………………3

Шаг 1. Выбор факторных признаков для построения двухфакторной регрессионной модели………………………………………………………4

Шаг 2. Эмпирическое уравнение множественной регрессии…………….5

Шаг 3. Оценивание параметров………………………………………….....8

Шаг 4. Пакет анализа Excel (программа «Регрессия»)…………………13

Шаг 5. Статистическая значимость коэффициентов…………………….18

Шаг 6. Точечный и интервальный прогнозы результирующего показателя…………………………………………………………………..19

Заключение…………………………………………………………………21

Список используемой литературы………………………………………...

Содержимое работы - 1 файл

курсовая Рада.docx

— 72.76 Кб (Скачать файл)

 

Шаг 4. Пакет анализа  Excel (программа «регрессия») 

Построение  регрессии, оценивание ее параметров и  их значимости выполнется значительно  быстрее при использовании пакета анализа Excel (программа «Регрессия»).

Рассмотрим  интерпретацию полученных результатов  в общем случае (m объясняющих переменных) по данным задачи.

    I

Регрессионная статистика
Множественный R 0,803560055
R-квадрат 0,645708762
Нормированный R-квадрат 0,544482694
Стандартная ошибка 17,86011157
Наблюдения 10
 

    В таблице  Регрессионная статистика приводятся значения:

  1. Множественный R – коэффициент множественной корреляции R=.
  2. R квадрат – коэффициент детерминации R2.
  3. Нормированный R-квадрат – скорректированный R2 с поправкой на число степеней свободы.
  4. Стандартная ошибка – стандартная ошибка регрессии S.
  5. Наблюдения – число наблюдений.
 

    II

  df SS MS F Значимость F
Регрессия 2 4069,514903 2034,757 6,378878 0,026470457
Остаток 7 2232,885097 318,9836    
Итого 9 6302,4      
 
 

В таблице  дисперсионный анализ приведены:

  1. Столбец df – число степеней свободы, равное:

    df=m   для строки Регрессия;

    df=n-m-1  для строки Остаток;

    df=n-1  для строки Итого.

  1. Столбец SS – сумма квадратов отклонений, равная:

    i- yср)2  для строки Регрессия;

    *(y-ŷ) для строки Остаток;

    *(yi-yср)2  для строки Итого.

  1. Столбец MS – дисперсии, определяемые по формуле MS=SS/df:
    • Факторная   для строки Регрессия;
    • Остаточная для строки Остаток.
  1. Столбец F – расчетное значение F-критерия, вычисляемое по формуле

    F= MS (регрессия) /MS (остаток).

  1. Столбец Значимость F – значение уровня значимости, соответствующее вычисленной F – статистики:

    Значимость  F = FРАСП (F - статистика; df(регрессия); df(остаток)). 

    III

  Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение -6,634579097 25,16983959 -0,263592427 0,799684995 -66,15179218 52,88263399
X1 0,595751398 0,468789307 1,27082975 0,244390643 -0,512759167 1,704261962
X2 0,992525051 0,764518131 1,29823612 0,235340264 -0,815273061 2,800323164
 

В этой таблице указаны:

  1. Коэффициенты – значения коэффициентов b0, b1, b2.
  2. Стандартная ошибка – стандартные ошибки коэффициентов регрессии Sb0, Sb1,  Sb2.
  3. t – статистика – расчетные значения t-критерия, вычисляемые по формуле

    t-статистика = Коэффициенты/ Стандартная ошибка.

  1. Р-значение (значимость t) – это значения уровня значимости, соответствующее вычисленной t-статистике:

    Р-значение = СТЬЮДРАСП (t-статистика; df(остаток)).

Если  Р-значение меньше стандартного уровня значимости, то соответствующий коэффициент статистически значим.

  1. Нижние 95% и Верхние 95% - нижние и верхние границы 95%-ных доверительных интервалов для коэффициентов теоретического уравнения линейной регрессии. 
 

    IV

Наблюдение Предсказанное Y Остатки
1 48,95627847 -12,95627847
2 59,27948447 -31,27948447
3 53,71756231 12,28243769
4 52,13519503 21,86480497
5 72,77924337 7,220756629
6 87,07491325 -3,07491325
7 84,69427133 -2,694271329
8 89,45791884 8,542081158
9 99,38553303 12,61446697
10 108,5195999 -12,5195999
 

В таблице  Вывод остатка указаны:

  1. Наблюдение – номер наблюдения.
  2. Предсказанное y – расчетные значения зависимой переменной.
  3. Остатки e – разница между наблюдаемыми и расчетными значениями зависимой переменной.

      Рисунок 2. График остатков 
 

Используя результаты работы пакета анализа Excel, проанализируем зависимость накоплений от дохода семьи, расходов на питания и стоимости имущества.

Результаты  регрессионного анализа запишем  в виде

      Ŷ= -6,635+0,596x1+0,993x2,   R2=0,646

            (25,17)      (0,47)                (0,76) 

(в скобках  указаны стандартные ошибки коэффициентов  регрессии).

Коэффициенты  регрессии b0=-6,635, b1=0,596 и b2=0,993. Направление связи между y, x1 и x2 определяет знак коэффициентов регрессии b1=0,596 и b2=0,993, т.е. связи являются прямыми и положительными. Например, коэффициент b1=0,596 показывает, что при увеличении доходов на 0,596 усл ед накопления увеличатся на 1 усл ед, а расходы на питание увеличатся на 0,993  усл ед.

Оценим  значимость коэффициентов полученной модели. Значимость коэффициентов (b0, b1, b2, b3) проверяется по t – тесту:

      Р – значение (b0)= 0,799 > 0,05 > 0,01;

      Р – значение (b1)= 0,244 > 0,05 > 0,01;

      Р – значение (b2)= 0,235 > 0,05 > 0,01.

Следовательно, коэффициенты незначимы при 1% - ном  уровне, и тем более при 5% - ном  уровне значимости.

Результаты  оценивания регрессии совместимы с  их доверительным интервалом. С вероятностью 95% доверительные интервалы для  коэффициентов есть (-66,2 – 52,9) для  b0, (-0,5 – 1,71) для b1, (-0,8 – 2,8) для b2.

Качество  модели оценивается коэффициентом  детерминации R2. Величина R2=0,646 означает, что фактором накоплений можно объяснить 64,6% вариации (разброса) доходов. 

 

Шаг 5. Статистическая значимость коэффициентов 

Статистическая  значимость коэффициентов множественной  регрессии с m объясняющими переменными проверяется на основе t – статистики:

      tj= ,

имеющий распределение Стьюдента с υ=n-m-1 степенями свободы.

Наблюдаемому (расчетному) значению критерия t соответствует определенная значимость t, которую вычисляем в Excel с помощью функции

      Значимость  t= СТЬЮДРАСП (t; υ; 2).

Доверительный интервал для величины β получим, решив неравенство

      b-tкрSb < β < b+ tкрSb

Оценим  значимость (используя данные предыдущего  шага) коэффициентов b1=0,596, b2=0,993 и построим доверительные интервалы при 5% - ном уровне значимости.

Наблюдаемые значения критериев

      t1 = 1,27   t2 = 1,3

      Значимость  t1 = 1,27 > 0,05

      Значимость  t2 = 1,3 > 0,05 

Отсюда  следует, что коэффициенты регрессии  незначимы.

При α = 0,05 критическое значение критерия tкр= 2,36 определяем с помощью функции tкр= СТЬЮДРАСПОБР (α; υ).

Доверительный интервал для βi

0,596-2,36*0,47 < β1 < 0,596+2,36*0,47 или -0,51 < β1 < 1,71

0,993-2,36*0,76 < β2 < 0,993+2,36*0,76 или -0,8 < β2 < 2,79.

 

Шаг 6. Точечный и интервальный прогнозы результирующего  показателя

По данным о зависимости накоплений Y от доходов X1 оценим накопления еще двух семей при доходах равных X1,11=100 и X1,12=108 усл ед. Найдем стандартную ошибку предсказания и 99% - ный доверительный интервал для полученной оценки.

      Sp = S

      ŷp-tкрSp < ŷp < ŷp+tкрSp

Исходные  данные

                    Y                   X1
36 40
28 44
66 28
74 52
80 50
84 64
82 70
98 68
112 78
96 90
 
 
 
 
 
 

Информация о работе Эконометрическое моделирование