Ветроэнергетика в РБ

Автор работы: Пользователь скрыл имя, 21 Февраля 2012 в 12:21, реферат

Краткое описание

Огромная энергия движущихся воздушных масс, и мысль об ее использовании давно уже привлекала людей. Да и использовать эту энергию научились за тысячу лет до нашей эры. Энергия ветра помогала преодолевать просторы океанов, ветряные мельницы служили единственным источником энергии для тех человеческих поселений, где не было рек или моря.

Содержимое работы - 1 файл

ВЕТРОЭНЕРГЕТИКА.doc

— 205.00 Кб (Скачать файл)


ВВЕДЕНИЕ

 

 

Ограниченность мировых запасов топлива и энергии, неравномерность их распределения по планете, ухудшение экологической ситуации все острее ставят вопрос о всемирном использовании нетрадиционных экологически чистых энерготехнологий и использовании возобновляемых энергоресурсов.

Огромная  энергия  движущихся  воздушных   масс,   и   мысль   об   ее использовании давно уже привлекала людей.  Да  и  использовать  эту  энергию научились за тысячу лет до нашей эры. Энергия  ветра  помогала  преодолевать просторы океанов, ветряные мельницы служили единственным источником  энергии для тех человеческих поселений, где не было рек или моря.

В Европе количество водяных мельниц в конце VXIII века доходило до полумиллиона. В Беларуси в середине XIX века, например, в Гродненской губернии насчитывалось 258 ветряных мельниц.

И  теперь  интерес к использованию энергии ветра не прошел и,  более того, техника ХХ века открыла для этого совершенно новые возможности.

Активное использование экологически чистых источников энергии сейчас своего рода признак хорошего тона, всячески приветствуется как мировой общественностью, так и правительствами развитых стран.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ветер представляет собой движение воздушных масс земной атмосферы относительно вращающейся поверхности Земли, вызванное в первую очередь перепадом температуры в атмосфере из-за неравномерного нагрева ее Солнцем. Таким образом, энергию ветра можно рассматривать как солнечную энергию, преобразованную в механическую. В горизонтальном направлении типичные скорости ветра достигают значений 50 км/ч, хотя в воздушных струях возможны скорости и до 300 км/ч. В вертикальном направлении скорости существенно меньше, измеряемые десятками км/ч.

Дующие на Земле ветры обладают мощностью 2 700ТВт. Но лишь ¼ часть может быть использована на высоте до 100 м над поверхностью. [2, с. 373]

Ветровые условия района применительно к ветроиспользованию характеризуются ветроэнергетическим потенциалом, который включает в себя различные показателя ветра, определяемые по результатам многолетних наблюдений: среднегодовые и среднемесячные скорости ветра; повторяемость скорости и направление ветра в течение года, месяца, суток; данные о порывистости, затишьях и максимальных значениях скорости ветра; изменения его с высотой и т. п.

Ветроэнергетика — отрасль энергетики, специализирующаяся на использовании энергии ветра — кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2008 года общая установленная мощность всех ветрогенераторов составила 120 гигаватт, увеличившись вшестеро с 2000 года.

 

ИСТОРИЯ ИСПОЛЬЗОВАНИЯ ЭНЕРГИИ ВЕТРА

 

Первый ветрогенератор был простым устройством с вертикальной осью вращения, таким, например, как устройство, которое применялось в Персии за 200 лет до нашей эры для размола зерна. Использование такой мельницы с вертикальной осью вращения получило впоследствии повсеместное распространение в странах Ближнего Востока. Немного позднее была разработана мельница с горизонтальной осью вращения, которая состояла из десяти деревянных стоек, оснащенных поперечными парусами. Подобный примитивный тип ветрогенератора находит применение до сих пор во многих странах Средиземноморского бассейна. В ІХ столетии ветряные мельницы широко использовались на Ближнем Востоке и попали в Европу в Х столетии при возвращении крестоносцев. В Средние века в Европе многие поместные законы, включая и право отказа в разрешении на строительство ветряных мельниц, заставляли арендаторов иметь площади для посева зерна возле мельниц феодальных имений. Посадки деревьев близ ветреных мельниц запрещались для обеспечения "свободного ветра". В XIV столетии голландцы стали ведущими в усовершенствовании конструкций ветряных мельниц и широко использовали их с этих пор для осушения болот и озер в дельте реки Рейн. Между 1608 и 1612 гг. Польдер Беемстер, который находился на три метра ниже уровня моря, был осушен с помощью 26 ветрогенераторов мощностью 37 кВт каждый.

Позднее известный инженер-гидравлик Лигвотер, применив 14 ветрогенераторов производительностью 1000 м3/мин., которые перекачивали воду в аккумулирующий бассейн, осушил за четыре года польдер Шермер. Потом 37 ветрогенераторов перекачивали воду из бассейна в кольцевой канал, откуда она попадала в Северное море.

В 1582 г. в Голландии была построена первая маслобойня, которая использовала энергию ветра, через 4 года - первая бумажная фабрика, которая удовлетворяла повышенные требования к бумаге, обусловленные изобретением печатной машины.

В середине XIX столетия в Голландии для разных целей использовалось около 9 тысяч. ветрогенераторов. Голландцы существенно усовершенствовали конструкцию ветряных мельниц и, в частности, ветроколеса.

В более современных конструкциях паруса были заменены тонким листовым металлом, использовались стальные махи и разные типы жалюзи и щитков для регулирования частоты вращения ветроколеса при больших скоростях ветра. Большие ветряные мельницы заводского изготовления при больших скоростях ветра могли развивать мощность до 66 кВт.

Первой лопастной машиной, которая использовала энергию ветра, был парус. Парус и ветрогенератор кроме одного источника энергии объединяет один и тот же используемый принцип. Исследования показали, что парус можно представить в виде ветрогенератора с бесконечным диаметром колеса. Парус является наиболее совершенной лопастной машиной, с высочайшим КПД, который непосредственно использует энергию ветра для движения.

Еще в 1714 году француз Дю Квит предложил использовать ветрогенератор как двигатель для перемещения по воде. Пятилопастное ветроколесо, установленное на треноге, должно было приводить в движение гребное колесо. Идея так и осталась на бумаге, хотя понятно, что ветер произвольного направления может двигать судно в любом направлении.

Ветряные мельницы в Ла Манче (Испания) «Мельницы на козлах» являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле.

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых.

В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы. Толедо — 1526 г., Глочестер — 1542 г., Лондон — 1582 г., Париж — 1608 г., и др. В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

Первые разработки теории ветрогенератора относятся к 1918 г. В. Залевский заинтересовался ветряными мельницами и авиацией одновременно. Он начал создавать полную теорию ветряной мельницы и вывел несколько теоретических положений, которым должна отвечать ветроустановка.

В начале ХХ столетия интерес к воздушным винтам и ветроколёсам не был обособлен от общих тенденций времени - использовать ветер, где это только возможно. Сначала наибольшее распространение ветрогенераторы получили в сельском хозяйстве. Воздушный винт использовали для привода судовых механизмов. На всемирно известном "Фраме" он вращал динамомашину. На парусниках ветряные мельницы передавали движение насосам и якорным механизмам.

В Русской империи к началу минувшего столетия работало около 2500 тысяч ветряных мельниц общей мощностью 1 млн. квт. После 1917 года мельницы остались без хозяев и постепенно разрушились. Правда, делались попытки использовать энергию ветра уже на научной и государственной основе. В 1931 году близ Ялты была построена наибольшая на том время ветроэнергетическая установка мощностью 100 кВт, а позднее разработан проект ветрогенератора на 5000 кВт. Но реализовать его не удалось, так как Институт ветроэнергетики, который занимался этой проблемой, был закрыт.

Нужно отметить, что такова была общемировая тенденция. В США до 1940 года построили ветрогенератор мощностью 1250 кВт. До конца войны одна из его лопастей получила повреждения. Ее даже не стали ремонтировать - экономисты подсчитали, что более выгодно использовать обычную дизельную электростанцию. Дальнейшие исследования этой установки прекратились

Неудачные попытки использовать энергию ветра в крупномасштабной энергетике сороковых лет не были случайными. Нефть оставалась сравнительно дешевой, резко снизились удельные капитальные вложения на больших тепловых электростанциях, освоение гидроэнергии, как тогда казалось, гарантировало и низкие цены, и удовлетворительную экологическую ситуацию.

Первая в мире современная ветроэлектростанция с горизонтальной осью мощностью 100 кВт была построена в 1931 году в Крыму.

 

 

 

 

СОВРЕМЕННЫЕ МЕТОДЫ ГЕНЕРАЦИИ ЭЛЕКТРОЭНЕРГИИ ИЗ ЭНЕРГИИ ВЕТРА

 

Современные ветрогенераторы работают при скоростях ветра от 3—4 м/с до 25 м/с.

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, вес гондолы — 200 тонн, высота башни — 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. Компания Clipper Windpower разрабатывает ветрогенератор мощностью 7,5 МВт для офшорного применения.

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Были попытки построить ветрогенераторы так называемой ортогональной конструкции, то есть с вертикальным расположением оси вращения. Считается, что они имеют преимущество в виде очень малой скорости ветра, необходимой для начала работы ветрогенератора. Главная проблема таких генераторов — механизм торможения. В силу этой и некоторых других технических проблем ортогональные ветроагрегаты не получили практического распространения в ветроэнергетике.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

 

 

 

 

 

 

 

РАСПРОСТРАНЕНИЕ ВЕТРОЭНЕРГЕТИКИ

 

В 2008 году суммарные мощности ветряной энергетики выросли во всём мире до 120 ГигаВт. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт•ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов.

В 2007 году в Европе было сконцентрировано 61 % установленных ветряных электростанций, в Северной Америке 20 %, Азии 17 %.

Суммарные установленные мощности, МВт, по странам мира 2005—2007 г. согласно данным Европейской ассоциации ветроэнергетики и GWEC, приведены в таблице 1.

 

Страна  

2005 г., МВт  

2006 г., МВт  

2007 г., МВт  

2008 г. МВт.  

США

9149

11603

16818

25170

Германия

18428

20622

22247

23903

Испания

10028

11615

15145

16754

Китай

1260

2405

6050

12210

Индия

4430

6270

7580

9645

Италия

1718

2123

2726

3736

Великобритания

1353

1962

2389

3241

Франция

757

1567

2454

3404

Дания

3122

3136

3125

3180

Португалия

1022

1716

2150

2862

Канада

683

1451

1846

2369

Нидерланды

1224

1558

1746

2225

Япония

1040

1394

1538

1880

Австралия

579

817

817,3

1306

Швеция

510

571

788

1021

Ирландия

496

746

805

1002

Австрия

819

965

982

995

Греция

573

746

871

985

Норвегия

270

325

333

428

Бразилия

29

237

247,1

341

Бельгия

167,4

194

287

-

Польша

73

153

276

472

Турция

20,1

50

146

433

Египет

145

230

310

365

Чехия

29,5

54

116

-

Финляндия

82

86

110

-

Украина

77,3

86

89

-

Болгария

14

36

70

-

Венгрия

17,5

61

65

-

Иран

23

48

66

85

Эстония

33

32

58

-

Литва

7

48

50

-

Люксембург

35,3

35

35

-

Аргентина

26,8

27,8

29

29

Латвия

27

27

27

-

Россия

14

15,5

16,5

-

Информация о работе Ветроэнергетика в РБ