Учение о биосфере В.И.Вернадского

Автор работы: Пользователь скрыл имя, 16 Января 2012 в 17:10, контрольная работа

Краткое описание

Стать новым Вернадским очень трудно, но тем не менее нашим молодым ученым падать духом не следует. Дорога для них открыта широко… Если поставить вопрос, будет ли кто-нибудь из них вторым Вернадским, то положительный ответ дать трудно. Конечно, в природе все бывает, и надежды терять не надо…

Содержание работы

1. Введение……………………………...……………….……...3
2. Основная часть………………….…………………...…….3
2.1. Понятие о биосфере…………………………..…….…….3
2.2. Учение В.И.Вернадского о биосфере………..……….....4
2.3. Структура и функции биосферы………….……………..8
2.4. Границы биосферы………………………….…………...10
2.5. Живое вещество планеты………………………….……13
2.6. Функции живого вещества………………….………..…16
3. Заключение………….…………………………..………....21
4. Список литературы……………………………..………22

Содержимое работы - 1 файл

Экология.doc

— 142.50 Кб (Скачать файл)

      Современная биосфера образовалась в результате длительной эволюции под влиянием совокупности космических, геофизических и геохимических  факторов. Первоначальным источником всех процессов, протекавших на Земле, было Солнце, но главную роль в становлении и последующем развитии биосферы сыграл фотосинтез. Биологическая основа генезиса биосферы связана с появлением организмов, способных использовать внешний источник энергии, в данном случае энергию Солнца, для образования из простейших соединений органических веществ, необходимых для жизни.

      Под фотосинтезом понимается превращение зелеными растениями и фотосинтезирующими микроорганизмами при участии энергии света и поглощающих свет пигментов (хлорофилл и др.) простейших соединений (воды, углекислого газа и минеральных элементов) в сложные органические вещества, необходимые для жизнедеятельности всех организмов.

      Процесс протекает следующим образом. Фотон  солнечного света взаимодействует с молекулой хлорофилла, содержащегося в хлоропласте зеленого листа, в результате чего высвобождается электрон одного из ее атомов. Этот электрон, перемещаясь внутри хлоропласта, реагирует с молекулой АДФ, которая, получив достаточную дополнительную энергию, превращается в молекулу АТФ – вещества, являющегося энергоносителем. Возбужденная молекула АТФ в живой клетке, содержащей воду и диоксид углерода, способствует образованию молекул сахара и кислорода, а сама при этом утрачивает часть энергии и превращается вновь в молекулу АДФ.

      В результате фотосинтеза растительность земного шара ежегодно усваивает  около 200 млрд. т углекислого газа и выделяет в атмосферу примерно 145 млрд. т свободного кислорода, при  этом образуется более 100 млрд. т органического вещества. Если бы не жизнедеятельность растений, исключительно активные молекулы кислорода вступили бы в различные химические реакции, и свободный кислород исчез бы из атмосферы примерно за 10 тыс. лет. К сожалению, варварское сокращение человеком массивов зеленого покрова планеты являет реальную угрозу уничтожения современной биосферы.

      В процессе фотосинтеза одновременно с накоплением органического  вещества и продуцированием кислорода  растения поглощают часть солнечной  энергии и удерживают ее в биосфере. На фотосинтез используется около 1% солнечной энергии, падающей на Землю. Возможно, этот низкий показатель связан с малой концентрацией углекислого газа в атмосфере и гидросфере. Ежегодно фотосинтезирующие организмы суши и океана связывают около 3·1018 кДж солнечной энергии, что примерно в 10 раз больше той энергии, которая используется человечеством.

      В отличие от зеленых растений некоторые  группы бактерий синтезируют органическое вещество за счет не солнечной энергии, а энергии, выделяющейся в процессе реакций окисления серных и азотных соединений. Этот процесс именуется хемосинтезом. В накоплении органического вещества в биосфере он, по сравнению с фотосинтезом, играет ничтожно малую роль.

      Синтезированные зелеными растениями и хемобактериями органические вещества (сахара, белки и др.), последовательно переходя от одних организмов к другим в процессе их питания, переносят заключенную в них энергию. Растения поедают растительноядные животные, которые в свою очередь становятся жертвами хищников и т. д. Этот последовательный и упорядоченный поток энергии является следствием энергетической функции живого вещества в биосфере.

      Средообразующая функция. Биосфера, согласно учению В.И.Вернадского, есть целостное единство, планетарная система, все элементы которой взаимосвязаны и взаимодействуют. В этой системе центральную роль играет живое вещество, поскольку с ним генетически связаны и образованы из него все структурные части биосферы благодаря прошлой или настоящей деятельности живых организмов. Окружающая живое вещество физико-химическая среда изменена вследствие его функционирования до такой степени, что биотические и абиотические процессы оказались неразделимыми. В результате их взаимовлияния живые организмы преобразуют среду своего обитания или поддерживают ее в таком состоянии, которое удовлетворяет условиям их существования. Выполняя средообразующие функции, живые организмы контролируют состояние окружающей среды.

      Средообразующая роль живого вещества в биосфере имеет, по В.И.Вернадскому, химическое проявление и выражается в соответствующих биогеохимических функциях, которые свидетельствуют об участии живых организмов в химических процессах изменения вещественного состава биосферы. Живое вещество выполняет следующие биогеохимические функции: газовые, концентрационные, окислительно-восстановительные, биохимические и биогеохимические, связанные с деятельностью человека (Вернадский, 1965).

      Газовые функции заключаются в участии  живых организмов в миграции газов  и их превращениях. В зависимости  от того, о каких газах идет речь, выделяется несколько газовых функций.

  1. Кислородно-диоксидуглеродная – создание основной массы свободного кислорода на планете. Носителем данной функции является каждый зеленый организм. Выделение кислорода идет только при солнечном свете, ночью этот фотохимический процесс сменяется выделением зелеными растениями углекислого газа.
  2. Диоксидуглеродная, не зависимая от кислородной – образование биогенной угольной кислоты как следствие дыхания животных, грибов и бактерий. Значение функции возрастает в области подземной тропосферы, не имеющей кислорода.
  3. Озонная и пероксидводородная – образование озона (и, возможно, пероксида водорода). Биогенный кислород, переходя в озон, предохраняет жизнь от разрушительного действия радиации Солнца. Выполнение этой функции вызвало образование защитного озонового экрана.
  4. Азотная – создание основной массы свободного азота тропосферы за счет выделения его азотовыделяющими бактериями при разложении органического вещества. Реакция происходит в условиях как суши,  так и океана.
  5. Углеводородная – осуществление превращений многих биогенных газов, роль которых в биосфере огромна. К их числу относятся, например, природный газ, терпены, содержащиеся в эфирных маслах, скипидаре и обусловливающие аромат цветов, запах хвойных.

    Вследствие  выполнения живым веществом газовых  биогеохимических функций в течение  геологического развития Земли сложились  современный химический состав атмосферы  с уникально высоким содержанием  кислорода и низким содержанием  углекислого газа, а также умеренные температурные условия.

      Следует отметить, что, в соответствии с гипотезой  О.Г.Сорохтина, не весь кислород атмосферы  имеет биогенное происхождение, 30% его поступило в воздушный  бассейн в результате дегазации  недр.

      Концентрационные  функции связаны с аккумуляцией живыми организмами из внешней среды химических элементов – водорода, углерода, азота, кислорода, кальция, магния, натрия, калия, фосфора и многих других, включая тяжелые металлы. Отмирание живого вещества (естественная смерть или случайная гибель), особенно массовое, приводит к аномально высокому содержанию большинства этих элементов в почве и литосфере вплоть до образования горных пород однородного химического состава – торфа, углей, известняков, сапропелей, мела, железных руд осадочного происхождения и многих других.

      Вследствие  выполнения окислительно-восстановительных  функций осуществляются химические превращения веществ, содержащих атомы  с переменной валентностью. Окислительная  функция выражается в окислении  с участием бактерий и, возможно, грибов всех бедных кислородом соединений в почве, коре выветривания и гидросфере. Например, так образуются болотные железные руды, бурые железистые конкреции, ожелезненные горизонты. Восстановительная функция противоположна по своей сути окислительной. Благодаря ей в результате деятельности анаэробных бактерий в нижней трети профиля заболоченных почв, практически лишенного кислорода, образуются оксидные формы железа.

      Биохимические функции связаны с жизнедеятельностью живых организмов – их питанием, дыханием, размножением, смертью и последующим разрушением тел. В результате происходит химическое превращение живого вещества сначала в биокосное, а затем, после умирания, в косное. Следует различать разрушение тел организмов после их смерти, идущее повсеместно и вызываемое микробами, грибами и некоторыми насекомыми, и разрушение, связанное с массовым захоронением растительных и животных остатков после их смерти или гибели. В последнем случае совместное или последовательное выполнение живым веществом концентрационных и биохимических функций приводит к геохимическому преобразованию литосферы.

      Биогеохимические  функции, связанные с деятельностью  человека, обеспечили большие изменения  химических и биохимических процессов  в биосфере, способствуют становлению  ее нового эволюционного состояния – ноосферы. Уже сегодня локальное и планетарное загрязнение в результате развития теплоэнергетики, промышленности, транспорта и сельского хозяйства может привести к необратимым последствиям в биосфере, так как человек интенсивнее, чем другие организмы, изменяет физические условия среды.

      Кроме указанных, к функциям живого вещества в биосфере следует отнести также  водную, которая связана с биогенным  круговоротом воды, имеющим важное значение в круговороте воды на планете.

      Выполняя перечисленные функции, живое вещество адаптируется к окружающей среде и приспосабливает ее к своим биологическим потребностям. При этом живое вещество и среда его обитания развиваются как единое целое, однако контроль над состоянием среды осуществляют живые организмы.  
 

3. ЗАКЛЮЧЕНИЕ 

     Изучение  биосферы становится все более важной и актуальной задачей. Это вызвано  непрерывно возрастающим и усложняющимся  воздействием человека на окружающую среду. Уже сейчас мы должны  уметь  ясно предвидеть все возможные последствия нашего влияния на природу. Возможность и правильность такого прогноза зависят от глубины наших познаний о строении и функционировании биосферы в целом и ее различных участков и компонентов. Особенно важно иметь представление о роли живых организмов – основной движущей силы в биосфере.

      Судьба  биосферы – проблема, касающаяся не только всех без исключения ученых, независимо от их специальности, но практически  каждого из нас.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

СПИСОК  ЛИТЕРАТУРЫ: 

  1. Потасов В. Ф. Экология, здоровье и охрана окружающей среды в России. – М.: Финансы и статистика, 2001г.
  2. Второв П. П., Дроздов Н. Н. «Рассказы о биосфере», М.: Просвещение, 1976
  3. Дажо Р. «Основы экологии», пер. с фр. М.: Прогресс, 1975
  4. Камшилов М. М. «Эволюция биосферы», М.: Наука, 1974
  5. Кашапов Р. Ш. «Живая оболочка Земли», М.: Просвещение, 1984
  6. Лапо А. В. «Следы былых биосфер», М.: Знание, 1979
  7. Экология. Учебник для ВУЗов. Под ред. Н. И. Иванова, И. М. Фадина, М. 2002г.
  8. Ярыгин В. Н. «Биология», М.: Высш. шк., 1997
  9. Баландин Р.К. «Вернадский: жизнь, мысль, бессмертие», -М.:  Знание, 1988г.

Информация о работе Учение о биосфере В.И.Вернадского