Расчет циклона СДК-ЦН-33

Автор работы: Пользователь скрыл имя, 19 Февраля 2012 в 20:13, курсовая работа

Краткое описание

Загрязнение атмосферного воздуха выбросами промышленных предприятий приводит к значительному уменьшению солнечной радиации, снижению видимости, освещенности, к увеличению частоты туманов, что отрицательно сказывается на экологии и здоровье населения. Присутствие в воздухе различных загрязняющих веществ в сочетании с другими факторами окружающей среды вызывает повреждение материалов, конструкций, в частности подвергаются разрушению сооружения, имеющие большую художественную и историческую ценность.

Содержание работы

Введение………………………………………………………………………..4
1. Аналитический обзор……………………………………………………….5
1.1. Классификация газообразных промышленных выбросов……….5
1.2. Методы очистки газов от аэрозолей………………………………6
2. Технологическая часть…………………………………………………….15
2.1. Выбор газоочистного устройства………………………………...15
2.2. Принцип действия центробежных пылеуловителей……………16
2.3. Исходные данные………………………………………………….17
2.4. Расчет циклона…………………………………………………….17
3. Природоохранные мероприятия…………………………………………..20
Заключение……………………………………………………………………24
Список использованных источников……………………

Содержимое работы - 1 файл

КП.doc

— 322.00 Кб (Скачать файл)

     СОДЕРЖАНИЕ 

     Введение………………………………………………………………………..4

     1. Аналитический обзор……………………………………………………….5

           1.1. Классификация  газообразных промышленных выбросов……….5

           1.2. Методы очистки  газов от аэрозолей………………………………6

     2. Технологическая часть…………………………………………………….15

           2.1. Выбор газоочистного  устройства………………………………...15

           2.2. Принцип действия  центробежных пылеуловителей……………16

           2.3. Исходные данные………………………………………………….17

           2.4. Расчет циклона…………………………………………………….17

     3. Природоохранные мероприятия…………………………………………..20

     Заключение……………………………………………………………………24

     Список  использованных источников………………………………………..25

     Приложение…………………………………………………………………...26 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    ВВЕДЕНИЕ 

     Охрана  воздушной среды от загрязнений  промышленными выбросами, очистка  промышленных выбросов входит в комплекс глобальных проблем охраны природы. Каждый год в атмосферный воздух попадает свыше тысячи тонн промышленной пыли и вредных газообразных веществ.

     Загрязнение атмосферного воздуха выбросами  промышленных предприятий приводит к значительному уменьшению солнечной радиации, снижению видимости, освещенности, к увеличению частоты туманов, что отрицательно сказывается на экологии и здоровье населения. Присутствие в воздухе различных загрязняющих веществ в сочетании с другими факторами окружающей среды вызывает повреждение материалов, конструкций, в частности подвергаются разрушению сооружения, имеющие большую художественную и историческую ценность.

     Без специальных мероприятий по снижению загрязнения воздуха выбросы  могут стать источником серьезного ухудшения экологической обстановки, а расширение производств и постоянный рост объемов транспортных средств только усугубляют сложившуюся обстановку.

     В качестве мероприятий по снижению загрязнения  воздуха применяют абсорбцию  жидкостями, адсорбцию твердыми поглотителями, каталитические, плазмохимические и др. методы очистки. Применение тех или иных методов зависит от физико-химических свойств загрязняющего вещества, его агрегатного состояния, концентрации в очищаемой среде [1]. 
 
 
 
 
 
 

  1. Аналитический обзор
 
    1. Классификация газообразных промышленных выбросов
 

    В газообразных промышленных выбросах вредные  примеси можно разделить на две группы:

    а) взвешенные частицы (аэрозоли) твердых  веществ — пыль, дым; жидкостей — туман;

    б) газообразные и парообразные вещества.

    К аэрозолям относятся взвешенные твердые частицы неорганического и органического происхождения, а также взвешенные частицы жидкости (тумана). Пыль – это дисперсная малоустойчивая система, содержащая больше крупных частиц, чем дымы и туманы. Счетная концентрация (число частиц в 1 см3) мала по сравнению с дымами и туманами. Неорганическая пыль в промышленных газовых выбросах образуется при горных разработках, переработке руд, металлов, минеральных солей и удобрений, строительных материалов, карбидов и других неорганических веществ. Промышленная пыль органического происхождения – это, например, угольная, древесная, торфяная, сланцевая, сажа и др. К дымам относятся аэродисперсные системы с малой скоростью осаждения под действием силы тяжести. Дымы образуются при сжигании топлива и его деструктивной переработке, а также в результате химических реакций, например при взаимодействии аммиака и хлороводорода, при окислении паров металлов в электрической дуге и т.д. Размеры частиц в дымах много меньше, чем в пыли и туманах, и составляют от 5 мкм до субмикронных размеров, т.е. менее 0,1 мкм. Туманы состоят из капелек жидкости, образующихся при конденсации паров или распылении жидкости. В промышленных выхлопах туманы образуются главным образом из кислоты: серной, фосфорной и др.

    Вторая  группа – газообразные и парообразные вещества, содержащиеся в промышленных газовых выхлопах, гораздо более многочисленна. К ней относятся кислоты, галогены и галогенопроизводные, газообразные оксиды, альдегиды, кетоны, спирты, углеводороды, амины, нитросоединения, пары металлов, пиридины, меркаптаны и многие другие компоненты газообразных промышленных отходов.

    В настоящее время, когда безотходная  технология находится в периоде  становления и полностью безотходных  предприятий еще нет, основной задачей газоочистки служит доведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами [2]. 

    1. Методы  очистки газов от аэрозолей
 

    Методы  очистки по их основному принципу можно разделить на механическую очистку, электростатическую очистку и очистку с помощью звуковой и ультразвуковой коагуляции.

    Механическая  очистка газов включает сухие и мокрые методы. К сухим методам относятся:

    а) гравитационное осаждение;

    б) инерционное и центробежное пылеулавливание;

    в) фильтрация.

    В большинстве промышленных газоочистительных  установок комбинируется несколько приемов очистки от аэрозолей, причем конструкции очистных аппаратов весьма многочисленны.

    Гравитационное  осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах (рис. 1). Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40–100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов.

    

    Рис. 1. Пылеосадительная камера

    Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (рис. 2). Газы обеспыливаются, выходя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10-15 м/с. Гидравлическое сопротивление аппарата 100 - 400 Па (10 - 40 мм вод. ст.). Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода – быстрое истирание или забивание щелей.

    

    Рис. 2. Жалюзийный пылеуловитель

    1 – жалюзийная решетка; 2 – очищенные  газы

    Центробежные  методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей (рис. 3). Газовый поток подается в цилиндрическую часть циклона тангенциально, описывает спираль по направлению к дну конической части и затем устремляется вверх через турбулизованное ядро потока у оси циклона на выход. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц.

    

    Рис. 3. Циклон

    Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м3/ч), степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 30¸5 мкм степень очистки снижается до 80%, а при d = 2¸5 мкм она составляет менее 40%. Диаметр частиц, улавливаемых циклоном на 50%, можно определить по эмпирической формуле:

(1)

     

 

где m – вязкость газа, Па*с; DЦ – диаметр выходного патрубка циклонов, м; NОБ – эффективное число оборотов газа в циклоне; wг – средняя входная скорость газа, м/с; rч, rг – плотность частиц и газа, кг/м3.

Гидравлическое  сопротивление высокопроизводительных циклонов составляет около 1080 Па. Циклоны широко применяют при грубой и средней очистке газа от аэрозолей.

     Другим  типом центробежного пылеуловителя служит ротоклон, состоящий из ротора и вентилятора, помещенного в осадительный кожух. Лопасти вентилятора, вращаясь, направляют пыль в канал, который ведет в приемник пыли.

     Фильтрация основана на прохождении очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Наиболее часто для фильтрации применяют специально изготовленные волокнистые материалы — стекловолокно, шерсть или хлопок с асбестом, асбоцеллюлозу. В зависимости от фильтрующего материала различают тканевые фильтры (в том числе рукавные), волокнистые, из зернистых материалов (керамика, металлокерамика, пористые пластмассы). Тканевые фильтры, чаще всего рукавные, применяются при температуре очищаемого газа не выше 60-65°С (рис. 4). В зависимости от гранулометрического состава пылей и начальной запыленности степень очистки составляет 85-99%. Гидравлическое сопротивление фильтра около 1000 Па; расход энергии ~ 1 кВт*ч на 1000 м3 очищаемого газа. Для непрерывной очистки ткани продувают воздушными струями, которые создаются различными устройствами – соплами, расположенными против каждого рукава, движущимися наружными продувочными кольцами и др. Сейчас применяют автоматическое управление рукавными фильтрами с продувкой их импульсами сжатого воздуха.

     Волокнистые фильтры, имеющие поры, равномерно распределенные между тонкими волокнами, работают с высокой эффективностью; степень очистки h = 99,5¸99,9 % при скорости фильтруемого газа 0,15-1,0 м/с и DР=500¸1000 Па.

     На  фильтрах из стекловолокнистых материалов возможна очистка агрессивных газов при температуре до 275°С. Для тонкой очистки газов при повышенных температурах применяют фильтры из керамики, тонковолокнистой ваты из нержавеющей стали, обладающие высокой прочностью и устойчивостью к переменным нагрузкам; однако их гидравлическое сопротивление велико – 1000 Па.

     Фильтрация  – весьма распространенный прием  тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость  оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

     

     Рис. 4. Рукавный фильтр

     1 – корпус; 2 – встряхивающее устройство; 3 – рукав; 4 – распределительная  решетка

     Мокрая  очистка газов от аэрозолей основана на промывке газа жидкостью (обычной водой) при возможно более развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Этот универсальный метод очистки газов от частиц пыли, дыма и тумана любых размеров является наиболее распространенным приемом заключительной стадии механической очистки, в особенности для газов, подлежащих охлаждению. В аппаратах мокрой очистки применяют различные приемы развития поверхности соприкосновения жидкости и газа.

     Башни с насадкой (насадочные скрубберы) отличаются простотой конструкции и эксплуатации, устойчивостью в работе, малым гидравлическим сопротивлением Р=300D(¸800 Па) и сравнительно малым расходом энергии. В насадочном скруббере возможна очистка газов с начальной запыленностью до 5-6 г/м3. Эффективность одной ступени очистки для пылей с d > 5 мкм не превышает 70-80%. Насадка быстро забивается пылью, особенно при высокой начальной запыленности.

Информация о работе Расчет циклона СДК-ЦН-33