Радиопротекторы

Автор работы: Пользователь скрыл имя, 26 Января 2011 в 22:49, реферат

Краткое описание

Уже более 30 лет ученым известны радиозащитные свойства некоторых химических веществ. Их изучение проводится в интересах защиты здоровых тканей у тех больных, которые в связи с онкологическими заболеваниями подвергаются интенсивной радиотерапии. Очевидна и необходимость защиты человека от воздействия ионизирующих излучений при ликвидации последствий аварий на атомных установках и в случае военного конфликта, с применением ядерного оружия. Дальнейшее проникновение человека в космос также не мыслится без разработки соответствующих радиозащитных мероприятий.

Содержание работы

1. Радиопротекторы -- понятие стр. 2
2. Основы патогенеза радиационного поражения стр. 3
3. Классификация и характеристика радиозащитных веществ стр. 7
4. Механизм радиозащитного действия стр. 8
5. Практическое применение радиопротекторов стр. 10

Содержимое работы - 1 файл

Радипротекторы.rtf

— 209.90 Кб (Скачать файл)

  Когда речь идет о чувствительности организма к ионизирующему излучению, рассматривается, как правило, диапазон доз, вызывающих гибель при проявлениях костномозгового синдрома. Пострадиационные изменения в других (не критических) тканях могут оказать значительное воздействие на важные функции организма (зрение, репродуктивные функции), в то же время не оказывая решающего влияния на жизненный исход. В связи с нарушением нервно-гуморальной регуляции в пострадиационный патогенетический механизм вовлекаются все органы и ткани. Радиочувствительность же всего организма у млекопитающих приравнивается к радиочувствительности кроветворных клеток, так как их аплазия, возникающая после общего облучения в минимальных абсолютно смертельных дозах, приводит к гибели организма.

  ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАДИАЦИОННОЕ ПОРАЖЕНИЕ

 

  На конечный биологический эффект влияют различные факторы, которые в основном делятся на физические, химические и биологические.

  Среди физических факторов на первом месте стоит вид излучения, характеризуемый относительной биологической эффективностью. Различия биологического действия обусловлены линейным переносом энергии данного вида ионизирующего излучения, связанным с плотностью ионизации и определяющим способность излучения проникать в слои поглощающего его вещества. ОБЭ представляет величину отношения дозы стандартного излучения (изотоп 60Со или рентгеновское излучение 220 кВ) к дозе исследуемого излучения, дающей равный биологический эффект. Так как для сравнения можно выбрать множество биологических эффектов, для испытуемого излучения существует несколько величин ОБЭ. Если показателем пострадиационного действия берется катарактогенный эффект, величина ОБЭ для нейтронов деления лежит в диапазоне 5--10 в зависимости от вида облученных животных, тогда как по важному критерию -- развитию острой лучевой болезни -- ОБЭ нейтронов деления равняется примерно 1.

  Следующим существенным физическим фактором является доза ионизирующего излучения, которая в Международной системе единиц (СИ) выражается в грэях (Гр). 1 Гр=100 рад, 1 рад=0,975 Р. От величины поглощенной дозы зависят развитие синдромов радиационного поражения и продолжительность жизни после облучения.

  При анализе отношения между дозой, получаемой организмом млекопитающего, и определенным биологическим эффектом учитывается вероятность его возникновения. Если эффект появляется в ответ на облучение независимо от величины поглощенной дозы, он относится к разряду стохастических. За стохастические принимаются, например, наследственные эффекты излучения. В отличие от них нестохастические эффекты наблюдаются по достижении определенной пороговой дозы излучения. В качестве примера можно указать помутнение хрусталика, бесплодие и др.

  В Рекомендациях Международной комиссии по радиологической защите (№ 26, 1977 г.) стохастические и нестохастические эффекты определены следующим образом: “Стохастическими называют те беспороговые эффекты, для которых вероятность их возникновения (а не столько их тяжесть) рассматривают как функцию дозы. Нестохастическими называют эффекты, при которых тяжесть поражения изменяется в зависимости от дозы и, следовательно, для появления которых может существовать порог”.

  Химические радиозащитные вещества в зависимости от их эффективности снижают биологическое воздействие излучений в лучшем случае в 3 раза. Предотвратить возникновение стохастических эффектов они не могут.

  К существенным химическим факторам, модифицирующим действие ионизирующего излучения, относится концентрация кислорода в тканях организма у млекопитающих. Его наличие в тканях, особенно во время гамма- или рентгеновского облучения, усиливает биологическое воздействие радиации. Механизм кислородного эффекта объясняется усилением главным образом непрямого действия излучения. Присутствие же кислорода в облученной ткани по окончании экспозиции дает противоположный эффект.

  Для характеристики облучения, наряду с величиной общей дозы, важное значение имеет продолжительность экспозиции. Доза ионизирующей радиации независимо от времени ее действия вызывает в облученном организме одно и то же число ионизаций. Различие, однако, состоит в объеме репарации радиационного поражения. Следовательно, при облучении меньшей мощности наблюдается меньшее биологическое поражение. Мощность поглощенной дозы выражается в грэях за единицу времени, например Гр/мин, мГр/ч и т. д.

  Изменение радиочувствительности тканей организма имеет большое практическое значение. Данная книга посвящена радиопротекторам, а также веществам, снижающим радиочувствительность организма, однако это не означает, что мы недооцениваем исследования радиосенсибилизаторов; их изучение ведется прежде всего в интересах радиотерапии.

    КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКА РАДИОЗАЩИТНЫХ ВЕЩЕСТВ

 

  Радиозащитный эффект обнаружен у целого ряда веществ различной химической структуры. Поскольку эти разнородные соединения обладают самыми различными, подчас противоположными свойствами, их трудно разделить по фармакологическому действию. Для проявления радиозащитного эффекта в организме млекопитающего в большинстве случаев достаточно однократного введения радиопротекторов. Однако имеются и такие вещества, которые повышают радиорезистентность лишь после повторного введения. Различаются радиопротекторы и по эффективности создаваемой ими защиты. Существует, таким образом, множество критериев, по которым их можно классифицировать.

  С практической точки зрения радиопротекторы целесообразно разделить по длительности их действия, выделив вещества кратковременного и длительного действия.

    1. Радиопротекторы или комбинация радиопротекторов, обладающих кратковременным действием (в пределах нескольких минут или часов), предназначены для однократной защиты от острого внешнего облучения. Такие вещества или их комбинации можно вводить тем же особям и повторно. В качестве средств индивидуальной защиты эти вещества могут найти применение перед предполагаемым взрывом ядерного оружия, вхождением в зону радиоактивного загрязнения или перед каждым радиотерапевтическим местным облучением. В космическом пространстве они могут быть использованы для защиты космонавтов от облучения, вызванного солнечными вспышками.

    2. Радиозащитные вещества длительного воздействия предназначены для более продолжительного повышения радиорезистентности организма. Для получения защитного эффекта, как правило, необходимо увеличение интервала после введения таких веществ примерно до 24 ч. Иногда требуется повторное введение. Практическое применение этих протекторов возможно у профессионалов, работающих с ионизирующим излучением, у космонавтов при долговременных космических полетах, а также при длительной радиотерапии.

  Поскольку протекторы кратковременного защитного действия чаще всего относятся к веществам химической природы, говорят о химической радиозащите.

  С другой стороны, длительное защитное действие возникает после введения веществ в основном биологического происхождения; это обозначают как биологическую радиозащиту.

  Требования к радиопротекторам зависят от места применения препаратов; в условиях больницы способ введения не имеет особого значения. В большинстве случаев требования должны отвечать задачам использования радиопротекторов в качестве индивидуальных средств защиты.  Согласно Саксонову и соавт. (1976) эти требования должны быть как минимум следующими:

    -- препарат должен быть достаточно эффективным и не вызывать выраженных побочных реакций;

    -- действовать быстро (в пределах первых 30 мин) и сравнительно продолжительно (не менее 2 ч);

    -- должен быть нетоксичным с терапевтическим коэффициентом не менее 3;

    -- не должен оказывать даже кратковременного отрицательного влияния на трудоспособность человека или ослаблять приобретенные им навыки;

    -- иметь удобную лекарственную форму: для перорального введения или инъекции шприц-тюбиком объемом не более 2 мл;

    -- не должен оказывать вредного воздействия на организм при повторных приемах или обладать кумулятивными свойствами;

    -- не должен снижать резистентность организма к другим неблагоприятным факторам внешней среды;

    -- препарат должен быть устойчивым при хранении, сохранять свои защитные и фармакологические свойства не менее 3 лет.

  Менее строгие требования предъявляются к радиопротекторам, предназначенным для использования в радиотерапии. Они усложняются, однако, важным условием -- необходимостью дифференцированного защитного действия. Следует обеспечить высокий уровень защиты здоровых тканей и минимальный -- тканей опухоли. Такое разграничение позволяет усилить действие местно примененной терапевтической дозы облучения на опухолевый очаг без серьезного повреждения окружающих его здоровых тканей.

  РАДИОЗАЩИТНЫЕ ВЕЩЕСТВА КРАТКОВРЕМЕННОГО ДЕЙСТВИЯ

 

  К ним относятся разные типы химических соединений. Их классификация по химической структуре и предполагаемому механизму действия впервые дана в монографии Bacq (1965), а позже -- в работе Суворова и Шашкова (1975). В 1979 г. Sweeney опубликовал обзор химических радиопротекторов, изученных в рамках обширной исследовательской программы вооруженных сил США. В радиобиологических лабораториях Армейского исследовательского института им. Уолтера Рида в Вашингтоне, а также в целом ряде американских университетов в 1959--1965 гг. испытано около 4400 различных химических веществ. Помимо этого, в радиационной лаборатории ВВС США в Чикаго было проверено радиозащитное действие еще 1500 веществ.

  В результате проведенного анализа к клиническому применению была рекомендована небольшая группа препаратов, прежде всего вещество, обозначенное WR-2721. Речь шла о производном тиофосфорной кислоты (см. далее), названном также гаммафосом. Оно относится к большой группе серосодержащих радиопротекторов.

  Современные наиболее эффективные радиопротекторы делятся на две основные группы:

  а) серосодержащие радиозащитные вещества;

  б) производные индолилалкиламинов.

    МЕХАНИЗМ РАДИОЗАЩИТНОГО ДЕЙСТВИЯ

 

  Несмотря на обширные исследования, радиобиологи не достигли единого, полного и общепризнанного представления о механизме действия химических радиопротекторов, что отчасти является следствием ограниченности современных познаний о развитии радиационного поражения при поглощении энергии ионизирующего излучения живыми организмами.

  Представления о механизме защитного действия сосредоточены вокруг двух основных групп. 

  1. Радиохимические механизмы

  По этим представлениям, радиозащитные вещества либо их метаболиты непосредственно вмешиваются в первичные пострадиационные радиохимические реакции. К ним относятся:

  -- химическая модификация биологически чувствительных молекул-мишеней созданием смешанных дисульфидов между SH-группой аминокислоты белковой молекулы и SH-группой протектора;

  -- передача водорода протектора пораженной молекуле-мишени;

  -- инактивация окислительных радикалов, возникающих преимущественно при взаимодействии ионизирующего излучения с водой пораженной ткани. 

  2. Биохимико-физиологические механизмы

  Эти представления объясняют действие радиозащитных веществ их влиянием на клеточный и тканевый метаболизм. Не участвуя в самой защите, они косвенно способствуют созданию состояния повышенной радиорезистентности, мобилизуя собственные резервы организма. К этой группе можно отнести:

  -- высвобождение собственных эндогенных, способствующих защите веществ, таких как эндогенные SH-вещества, в особенности восстановленный глутатион или эндогенные амины (например, гистамин);

  -- подавление ферментативных процессов при окислительном фосфорилировании, синтезе нуклеиновых кислот, белков и др., ведущих к снижению общего потребления кислорода, а в пролиферативных тканях--к отсрочке или торможению деления клеток. Этот эффект объясняется взаимодействием протектора с группами ферментов в митохондриях и эндоплазматическом ретикулуме или с белками клеточных мембран. Он носит также название “биохимический шок”;

  -- влияние на центральную нервную систему, систему гипофиз -- надпочечники, на сердечно-сосудистую систему с созданием общей или избирательной тканевой гипоксии. Сама по себе гипоксия снижает образование пострадиационных окислительных радикалов и радиотоксинов, восстанавливает тканевый метаболизм. Затем она может привести к высвобождению эндогенных SH-веществ.

  Современный исследователи склоняются в пользу биохимических механизмов радиозащиты. Особенно обращает внимание  фармакологический аспект взаимодействия радиопротекторов с рецепторами на различных уровнях организма.   Возможности защитного действия вещества ограничены количеством воспринимающих рецепторов. Радиозащитное действие серосодержащих веществ, в том числе цистамина и гаммафоса, вероятнее всего, реализуется благодаря их взаимодействию с рецепторами радиочувствительных клеток.

Информация о работе Радиопротекторы