Проблемы утилизации ТБО

Автор работы: Пользователь скрыл имя, 17 Октября 2011 в 10:02, реферат

Краткое описание

Из-за проблем с утилизацией отходов в атмосферу Земли по вине человека попадает огромное количество вредных веществ, которые отравляют, как растения, так животных и конечно же, организм человека.
В данной работе будут рассмотрены следующие вопросы:
Раскрыта проблема утилизации упаковочного материала (полиэтиленовые пакеты и т.д.);
Рассмотрены проблемы развития безотходных производств;
Рассмотрено воздействие производства товаров тяжелой промышленности на растения и животные;
Влияние тяжелых металлов на организм животных и человека.

Содержание работы

Введение 3
1 Проблемы утилизации упаковочного материала (полиэтиленовые пакета и т.п.) 4
2 Проблемы развития безотходных производств 11
3 Воздействие производства товаров тяжелой промышленности на растения и животные 20
4 Влияние тяжелых металлов на организм животных и человека 25
Заключение 28
Список литературы 29

Содержимое работы - 1 файл

экология.docx

— 61.80 Кб (Скачать файл)

     Измельчение при пониженных температурах обладает рядом преимуществ: благодаря охлаждению и инертной среде исключается термодеструкция полимера, резко возрастает степень измельчения, повышается производительность процесса и снижаются удельные энергозатраты, предотвращается окисление продукта. После измельчения, в том случае если отходы могут содержать металлические включения, их обычно пропускают через магнитный сепаратор. В магнитном поле, создаваемом с помощью электромагнитов, происходит отделение магнитных металлов от пластмассовой части отходов.

     В случае, если отходы могут содержать примеси цветных металлов, обычно используют электросепарацию. Разработаны также индуктивные приборы, позволяющие удалять немагнитные металлы в электромагнитном поле. В верхней части прибора расположена катушка индуктивности, создающая электромагнитное поле высокой частоты. Электропроводящие частицы изменяют это поле и возникающий сигнал через усилитель включает электромагнит управления заслонкой.

     Порция  материала с посторонними металлическими включениями удаляется из общего массопотока, после чего заслонка возвращается в исходное положение.

     Важной  стадией предварительной обработки  отходов является очистка их от загрязнений. Присутствие в отходах загрязнений  приводит к заметному ухудшению  внешнего вида деталей, получаемых из отходов, снижению качества поверхности и физико-механических показателей. Повышение содержания загрязнений от 0 до 20 % приводит к увеличению средней глубины шероховатости поверхности деталей от 0,3 до 0,55 мм.

     Для очистки загрязненных отходов применяют обычно следующие методы: сухое удаление пыли, стирку в водных растворах ПАВ, растворение полимеров с последующим фильтрованием растворов, обработку поверхности растворителями. Выбор метода определяется совместимостью загрязнений с пластмассами и химической природой загрязнений.

     Выделение из смеси отходов индивидуальных видов пластмасс также обычно осуществляют мокрым или сухим методом. Из мокрых методов наибольшее распространение получила флотационная сепарация, основанная на различии гидрофильно-гидрофобных свойств разных типов пластмасс.

     Помимо  мокрых методов разделения отходов пластмасс в последнее время все более широко используются сухие методы. Наибольшее распространение получил комбинированный метод, включающий просеивание и провеивание. Он предусматривает предварительную операцию измельчения и пригоден в тех случаях, когда измельченные отходы отличаются друг от друга по форме или по плотности или по обоим этим показателям.

     В том случае, когда удается добиться достаточно высокой степени очистки и выделения индивидуальных отходов из смеси, а также когда отходы предварительно рассортированы по видам пластмасс, переработка отходов во многом сходна с переработкой первичных пластмасс.

     Двух-трехкратная переработка пластмасс не влияет существенно на их физико-механические показатели. Это говорит о принципиальной возможности возвращать в производственный цикл получения изделий из пластмасс отходы синтеза и переработки, термическое воздействие на которые было сравнительно недолговременным. Однако такой возврат отходов в цикл требует тщательной предварительной оценки их свойств. Только после этого может быть принято решение о возможности использования отходов [2].

     Использование отходов вызывает необходимость определенных изменений в аппаратурном оформлении процессов переработки. Если говорить о наиболее, широко применяемом для переработки отходов методе экструзии, то из этих особенностей необходимо отметить следующие: наличие в питательном бункере ворошителя и шнека для облегчения условий запятки экструдера, коническую форму цилиндра в зоне загрузки для повышения степени сжатия материала, достаточную длину червяка для хорошей гомогенизации и исключения пульсации, обязательное наличие зоны разряжения для дегазации расплава, установку сменных фильтров в головке экструдера.

     Особенностью  повторной переработки ПВХ является необходимость дополнительной стабилизации. Отходы мягкого ПВХ используют главным образом для получения пленочных изделий (клеенки, скатерти, накидки, фартуки и пр.). Для этого отходы измельчают и на смесительных вальцах в количестве до 20 % смешивают с товарным ПВХ, стабилизаторами, пластификаторами, красителями и смазками, после чего пропускают через систему подогревательных и отделочных вальцев.

     Большой опыт, достигнутый при переработке отходов некоторыми зарубежными фирмами, позволяет им использовать индивидуальные полимерные отходы без смешения с товарным продуктом. Однако в этом случае большое значение приобретает сортировка, классификация и дополнительное смешение материала с необходимыми добавками. Отходы после предварительного испытания в лаборатории сортируют, затем при необходимости измельчают, просеивают, сушат, уплотняют и в зависимости от качества складируют в промежуточных бункерах. Далее в промежуточных смесителях осуществляется введение необходимых стабилизаторов и других добавок, а также, если требуется, наполнителей. После этого в пластосмесителях экструзионного типа или в двухчервячных экструдерах проводят гомогенизацию расплава с одновременной дегазацией и удалением инородных включений фильтрованием. Контроль процесса на различных стадиях осуществляется по следующим показателям: степень загрязнения, термостабильность, уровень дегазации, изменение молекулярной массы, текучесть, гомогенность расплава, прочностные характеристики. С целью переработки индивидуальных отходов разрабатываются специальные комплектные агрегаты, включающие дробилку, сепаратор и смеситель- дозатор для смешения с кондиционным продуктом. Такие установки созданы фирмами G. Fischer (Швейцария), Со. Мес (Италия), Mauser и Condux (ФРГ). 
 
 
 
 
 
 
 
 
 
 
 

     3 Воздействие производства  товаров тяжелой  промышленности на  растения и животные

     О загрязнении окружающей человека природной  среды вредными веществами сейчас знают  почти все. Средства массовой информации - печать, радио и телевидение - пытаются формировать такие знания у различных  групп населения.

     Под загрязнением окружающей среды понимают нежелательные изменения физических, физико-химических и биологических  характеристик воздуха, почв, вод, которые  могут неблагоприятно влиять на жизнь  человека, необходимых ему растений, животных и культурное достояние, истощать или портить его сырьевые ресурсы. Эти негативные изменения являются результатом деятельности человека. Они прерывают или нарушают процессы обмена и круговорота веществ, их ассимиляцию, распределение энергии, в результате меняются свойства окружающей среды, условия существования организмов, снижается продуктивность или же разрушаются экосистемы.

       Очевидно, что представить хороший  обзор того, как, чем и в каких  количествах загрязняется наш  большой общий дом - биосфера - практически невозможно. К настоящему  времени человечество ввело в  биосферу более 4 миллионов ксенобиотиков (чужеродных для нее антропогенных веществ) и продолжает вводить по 6 тысяч веществ ежедневно. Понятно, что удельный вес, доля различных вредных веществ в загрязнении окружающей среды не являются одинаковыми.

     Хорошо  известно, что многие из названных  металлов и десятки других микроэлементов находятся в живом веществе планеты  и являются совершенно необходимыми для нормального функционирования организмов. Однако, многие из таких веществ при их избыточном количестве в организме оказываются ядами, начинают быть опасными для здоровья. Так, например, непосредственное отношение к заболеванию раком имеют: мышьяк (рак легкого), свинец (рак почек, желудка, кишечника), никель (полость рта, толстого кишечника), кадмий (практически все формы рака).

     Пример, в биосфере кобальт преимущественно рассеивается, однако на участках, где есть растения — концентраторы кобальта, образуются кобальтовые месторождения. В верхней части земной коры наблюдается резкая дифференциация кобальта — в глинах и сланцах в среднем содержится 2·10-3% кобальта, в песчаниках 3·10-5, в известняках 1·10-5. Наиболее бедны кобальтом песчаные почвы лесных районов. В поверхностных водах его мало, в Мировом океане его лишь 5·10-8%. Будучи слабым водным мигрантом, он легко переходит в осадки, адсорбируясь гидроокисями марганца, глинами и другими высокодисперсными минералами.

     Содержание  кобальта в почвах определяет количество этого элемента в составе растений данной местности, а от этого зависит  поступление кобальта в организм травоядных животных.

     Постоянно присутствуя в тканях растений, кобальт  участвует в обменных процессах. В животном организме его содержание зависит от его уровня в кормовых растениях и почвах. Концентрация кобальта в растениях пастбищ  и лугов в среднем составляет 2,2·10-5—4,5·10-5% на сухое вещество. Способность  к накоплению этого элемента у  бобовых выше, чем у злаковых и  овощных растений. В связи с  высокой способностью к концентрации кобальта морские водоросли по его  содержанию мало отличаются от наземных растений, хотя в морской воде его  значительно меньше, чем в почвах. Кобальт участвует в ферментных системах клубеньковых бактерий, осуществляющих фиксацию атмосферного азота; стимулирует  рост, развитие и продуктивность бобовых  и растений ряда других семейств. В  микродозах кобальт является необходимым  элементом для нормальной жизнедеятельности  многих растений и животных. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

     Содержание  никеля в почвах составляет 0,004%, в природных поверхностных водах — 0,000 000 34%. В растениях в среднем содержится 0,00005% на живой вес (в зависимости от вида растения, местности, почвы, климата и др.). Растения в районе никелевых месторождений могут накоплять в себе значительные количества никеля. При этом наблюдаются явления эндемического заболевания растений, например уродливые формы астр, что может быть биологическим и видовым индикатором в поисках никелевых месторождений. Морфологически измененные анемоны в обогащенных никелем биогеохимических провинциях концентрируют никель в 30-кратном размере; повышенное содержание никеля в почвенных растворах и в почвах Южного Урала, обогащенных никелем в 50-кратном размере, является причиной появления уродливых форм у сон-травы (семейство лютиковых) и грудницы (семейство сложноцветных).

     Критические значения концентрации никеля в питательном  растворе—1,5 мг/кг и в сухой массе  ячменя, выращенного на такой среде  — 26 мг/кг. Токсический уровень этого  элемента в листьях растений начинается с превышения 1,0 мг/кг сухой массы.

     При усвоении никеля растениями происходит взаимодействие с содержащимися  в почве железом, кобальтом, хромом, магнием, медью, цинком, марганцем; при этом ионы марганца и магния не ингибируют, а ионы кобальта, меди, железа и цинка — ингибируют абсорбцию никеля на 25—42%. Существуют указания на то, что растения, произрастающие на терпентиновых почвах, не проявляют признаков токсического повреждающего воздействия никеля, в случаях, если соотношение медь: никель равно или более 1, или соотношение железо: никель равно или более 5. Среди растений существует различие в чувствительности по отношению к воздействию никеля. Токсические уровни никеля в листве растений (млн. -1 сухой массы): рис 20—25, ячмень 26, виды твердой древесины 100—150, цитрусовые 55—140, сорняки 154. Типичные симптомы повреждающего токсического действия никеля: хлороз, появление желтого окрашивания с последующим некрозом, остановка роста корней и появления молодых побегов или ростков, деформация частей растения, необычная пятнистость, в некоторых случаях — гибель всего растения.

     Среднее содержание цинка в почвах составляет 0,005%; из этого количества на долю растворимого цинка приходится не более 1 %.

     Солончаковые  и солонцеватые почвы содержат больше всего подвижного цинка (0,0087—0,014%), что  связано с высокой дисперсностью  солонцеватых почв и наличием в них  соединений цинка типа цинкатов натрия и калия. Промежуточное положение по количеству подвижных форм цинка занимают черноземы и серые лесные почвы; меньше всего таких форм в подзолистых почвах (0,00185—0,00241%). На кислых почвах цинк более подвижен и выносится из почв в больших количествах; поэтому на кислых почвах чаще наступает дефицит цинка, на щелочных почвах цинк наименее подвижен.

     В среднем в растениях обнаруживается 0,0003% цинка. В зависимости от вида, местности произрастания, климата  и т. п. содержание цинка в растениях  весьма варьирует.

     Цинк  является компонентом ряда ферментных систем. Он необходим для образования  дыхательных ферментов—цитохромов А и Б, цитохромоксидазы (активность которой резко падает при недостаточности цинка), входит в состав ферментов алкогольдегидразы и глицилглициндипептидазы. Цинк связан с превращением содержащих сульфгидрильную группу соединений, функция которых состоит в регулировании уровня окислительно-восстановительного потенциала в клетках. При недостатке цинка в вакуолях клеток накопляются полифенолы, фитостерин, лецитин как продукты неполного окисления углеводов и белков; в листьях обнаруживается больше редуцирующих сахаров и фосфора и меньше сахарозы и крахмала. При отсутствии цинка нарушается процесс фосфорилирования глюкозы. Недостаток цинка ведет к значительному уменьшению в растениях ростового гормона — ауксина.

     Болезни недостаточности цинка распространены преимущественно среди плодовых деревьев; могут заболевать также  хвойные растения и кукуруза. Заболевание излечивается непосредственно введением в стволы больных деревьев сернокислого цинка в кристаллическом виде, внесением в почву соединений цинка, опрыскиванием растений раствором цинковых солги.

     Цинковые  удобрения с успехом используются для повышения урожайности ряда культур: сахарной свеклы, озимой пшеницы, овса, льна, клевера, подсолнечника, кукурузы, хлопчатника, цитрусовых, других плодовых, древесных и декоративных растений.

     Некоторые растения особенно отзывчивы на цинковые удобрения. При использовании минеральных  удобрений, содержащих 20 кг сернокислого цинка на 1 га, наблюдается больший  урожай зерна кукурузы, чем от применения любой удобрительной смеси без  цинка. При этом кукуруза, больная  «побелением верхушки», полностью выздоравливает — исчезает хлороз, появляются нормальные зеленые листья [6]. 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Проблемы утилизации ТБО