Принцип действия экологического фактора. Изменение реакции организмов на действие экологического фактора

Автор работы: Пользователь скрыл имя, 28 Августа 2011 в 14:06, реферат

Краткое описание

Аутэкологии концентрируется на взаимодействии особей или групп особей с условиями окружающей их среды. Поэтому ключевым понятием аутэкологии является экологический фактор, то есть фактор окружающей среды, воздействующий на организм. Никакие природоохранные мероприятия не возможны без изучения оптимума действия того или иного фактора на данный биологический вид. В самом деле, как охранять тот или иной вид, если не знать, какие условия жизни он предпочитает.

Содержание работы

Введение……………………………………………………………3

2. Принцип действия экологического фактора……………………..4

3. Изменение реакции организмов на действие экологического

фактора в пространстве и времени……………………………………

4. Реакция организмов на одновременное действие нескольких

факторов………………………………………………………………....

5. Заключение…………………………………………………………

6. Список литературы…………………………………………………

Содержимое работы - 1 файл

реферат по экологии.doc

— 149.00 Кб (Скачать файл)

10    15    20    25

Температура^ с

Рис. 4. Зависимость частоты сокращений колокола медузы Aurelia aurita от температуры воды (из Даже, 1975). а - канадская популяция, б - флоридская популяция.

            Растения ястребинки Hieraciurn umbeHatum в лесу обычно прямостоячие, на песчаных полях — распростертые, а растения с песчаных дюн имеют промежуточный характер. Листья лесных экземпляров самые широкие, экземпляров с дюн — наиболее узкие, а с песчаных полей — промежуточные. Растения с песчаных полей покрыты тонкими волосками — признак, отсутствующий у растений из других местообитаний.

            Примерно 50 лет назад шведский ботаник Г. Турессон собрал семена растений ястребинки из различных местообитаний и вырастил их в своем саду. Оказалось, что, несмотря на выращивание в одинаковых условиях, морфологические различия между растениями из разных местообитаний сохранялись из поколения в поколение. Турессон дал этим различающимся формам название экотипов, сохранившееся за ними до сих пор. Далее он высказал предположение, что экотипы представляют собой генетические линии популяции, специфически приспособленные к особым условиям той среды, в которой они обитают. Если неизвестно, имеет ли адаптивный механизм генетическую основу, говорят о физиологических расах.

             Тысячелистник Achillea millefolium, один из представителей сложноцветных, растет в местах, расположенных и на уровне моря, и на высоте более 3000 м. В различных точках этих местообитаний были собраны семена растений тысячелистника и высеяны на высоте, близкой к высоте уровня моря. Несмотря на то, что растения выращивали в одинаковых условиях на протяжении нескольких поколений, особи из горных популяций сохраняли свои отличительные признаки: явно меньшие размеры и низкую продуктивность семян (рис. 2.5), Такие различия в адаптациях у растений из разных местообитаний, несомненно, расширяют пределы экологической устойчивости многих видов.

             При рассмотрении временных изменений в реакции на действия экологических факторов следует прежде всего отметить возрастные различия организмов. Как правило, пределы выносливости у молодых особей уже, чем у старых.

             Колоссальную выносливость к изменению температуры окружающей среды демонстрируют морские желуди балянусы. Они выдерживают колебания температуры от 0 (зимой вмерзая в лед) до 40°С. Яйца у них образуются летом. оплодотворение происходит зимой, а личинки выходят на волю весной. Температура и освещение оказывают очень сильное влияние на разные этапы процесса размножения. Так, например, круглосуточное освещение подавляет созревание яиц.

            Известны и обратные случаи, когда выносливость молодого организма значительно превышает выносливость взрослой особи; гусениц опускали в жидкий гелий (температура -271°С) , и после оттаивания они продолжали питаться и расти. Бабочки же от такой процедуры погибали.

             В индивидуальном развитии какого-либо организма, как правило, имеются периоды, когда он наиболее чувствителен к изменениям факторов среды. Такие периоды называются критическими и чаще всего соответствуют размножению и раннему онтогенезу. В это время многие факторы среды становятся лимитирующими. Пределы выносливости для размножающихся особей, семян, яиц, эмбрионов, проростков и личинок обычно уже, чем для неразмножающихся взрослых растений или животных.

           Зрелый кипарис может расти и на сухом нагорье, и на участке, погруженном в воду, однако размножается он только там, где есть влажная, но не заливаемая почва. Взрослые крабы рода Porlunus и многие другие морские животные могут переносить солоноватую или даже пресную воду, поэтому эти животные часто заходят в реки вверх по течению. Для личинок же крабов необходима высокая соленость, поэтому размножение в реках происходить не может и вид постоянно в них не обосновывается. Географическое распространение промысловых птиц часто определяется влиянием климатических факторов на стадию раннего онтогенеза, а не на взрослых особей. К недостатку пищи более устойчивы взрослые стадии.

           Таким образом, в течение индивидуального развития, или онтогенеза, реакция животных и растений на экологические факторы меняется".

            Рассмотрим теперь, как меняется реакция организмов на экологические факторы в астрономическом времени. Следует заметить, что обе временные зависимости — возрастная и астрономическая — могут быть тесно связаны друг с другом, особенно у организмов с коротким жизненным циклом. Прежде всего проанализируем сезонную динамику реакции видов. Сезонная периодичность относится к числу наиболее общих явлений в природе; она ярко выражена в умеренных и северных широтах. Ведущее значение для сезонной периодичности имеет годовой ход температуры, она же определяет чередование стадий покоя и активности. Состояние зимнего покоя характерно для многих видов животных и растений, но особенно хорошо оно выражено у организмов, не способных поддерживать высокую температуру своего тела, т. е. у растений, всех беспозвоночных животных и низших позвоночных (рыбы, амфибии, рептилии). Эти группы животных называются пойкилотермными (в противоположность гомойогермным, или теплокровным).

             Зимний покой — это физиологическое состояние, при котором Процессы морфогенеза заторможены или полностью остановлены, причем остановка обусловлена не прямым действием внешних факторов, а внутренним состоянием организма. Следовательно, зимний покой — это адаптивная черта. Зимующие стадии растений и животных имеют много сходных физиологических особенностей. Даже при повышении температуры они обычно или не развиваются, или развиваются очень медленно. Значительно снижена интенсивность обмена. Например, дыхание семян едва уловимо, а покоящиеся стадии насекомых потребляют в несколько раз меньше кислорода, чем при активном развитии.

            Характерной чертой покоя является переход от экзогенного питания к эндогенному, т.е. к использованию внутренних резервов организма. Обычно при этом уменьшается содержание воды в тканях животных, в семенах, зимних почках растений и т.д. Кроме того, наблюдения показывают, что холодостойкость растений и животных усиливается в течение зимы. Организм в продолжение осени и зимы постепенно приспосабливается к снижению температуры. Это явление называется холодовым закаливанием. Выделяют два этапа хо-лодового закаливания.

            У растений первый этап холодового закаливания соответствует еще положительным температурам — от 0 до 6°С. На этом этапе у части растительных клеток вода переходит в коллоидное состояние, а крахмал превращается в сахар и жиры. С наступлением небольших морозов (до -5°С) начинается второй этап закаливания. В межклетниках образуются кристаллы льда, отнимающие свободную воду из клеток, благодаря чему они становятся более устойчивыми к сильным морозам. Таким образом, пределы выносливости растений к низким температурам сильно расширяются. Подобные изменения носят сезонный характер и циклически изменяются во времени.

            У пойкилотермных животных переживание низких температур также связано с процессами, предотвращающими замерзание воды в теле. Рассмотрим пример с насекомыми.

            Из графика зависимости физиологического состояния насекомого от температуры его тела (рис.5) видно, что при температуре ниже 10°С наступает оцепенение, при температуре ниже 0°С — переохлаждение. Оно продолжается до момента кристаллизации воды, которая сопровождается скачком температуры. После чего резкое ее повышение приводит к необратимым изменениям в организме- В любой момент до этого скачка с повышением температуры насекомое может быть возвращено к нормальной жизнедеятельности. Оказалось, что физиологическое состояние насекомого в процессе охлаждения зависит от скорости понижения температуры. При медленном охлаждении в клетках образуются кристаллы льда, которые разрывают их оболочку. При очень быстром охлаждении центры кристаллизации не успевают образоваться, и формируется стекловидная структура. В результате цитоплазма не повреждается. Таким образом, глубокое, но очень быстрое охлаждение вызывает временную, обратимую остановку жизни. Подобное состояние получило название анабиоза.

Рис.5. Кривая Бахметьева, характеризующая изменение состояния насекомого под воздействием температуры среды (по Яхонтову, 1964), Объяснение в тексте.

           Однако в природе, как правило, такого состояния организма не бывает. Способность к переохлаждению сильно повышается в результате холодового закаливания, и насекомые могут переносить очень низкие температуры- При закаливании в тканях животных образуются глицеринсодержащие соединения (криопротекторы), которые значительно понижают точку замерзания воды. Момент резкого повышения температуры смещается в область более низких ее значений, что позволяет насекомым зимовать в переохлажденном, но не замороженном состоянии. Например, температура -42°С не оказывает губительного действия на жука березового заболонника. Каким же образом виды «синхронизируют» пределы выносливости с годовой ритмикой температуры? Хотя температура действительно влияет на скорость многих жизненных процессов, не она служит главным регулятором сезонных явлений в природе. Это подтверждается тем фактом, например, что весной и осенью при одинаковой температуре фенологические явления имеют противоположную направленность- Кроме того, если бы животные и растения реагировали на температуру, то их состояние зависело бы от ее случайных колебаний. И, наконец, подготовка к зимовке начинается задолго до наступления отрицательных температур. Следовательно. существуют какие-то другие условия, влияющие на сезонные пределы выносливости.

           Главным фактором, играющим сигнальную роль в регуляции сезонных циклов у большинства растений и животных, следует считать продолжительность светового дня. Реакция организма на изменение продолжительности светового дня получила название фотопериодизма. Данный фактор не случайно играет роль сигнального, поскольку именно длительность фотопериода обусловлена периодическими астрономическими явлениями.

            Различают два основных типа фотопериодической реакции (ФПР): длиннодневную и короткодневную (рис.5). Влияние длины светового дня обычно оценивают по проценту особей, находящихся в неактивном состоянии, т. е. в состоянии диапаузы. В случае длиннодневной ФПР развитие начинается с увеличением продолжительности дня. В случае короткодневной ФПР, наоборот, развитие прекращается при возрастании длины дня. Длиннодневная ФПР свойственна ржи, овсу, льну, пшенице; эти растения начинают цвести, когда продолжительность дня увеличивается. Короткодневной ФПР характеризуются астры, георгины, которые зацветают, когда день начинает убывать. Животные на длину дня реагируют чередованием стадий покоя и активности. Животные с короткодневной реакцией при удлинении дня впадают в спячку (тутовый шелкопряд). Большинство же животных имеют длиннодневную реакцию и начинают питаться, гнездиться и т. д. при увеличении длины дня.

Рис.6. Два типа фотопериодической реакции (ФПР). / - длиннодневная ФПР, 2 - короткодневная ФПР,

            Исследования реакции организмов на изменение продолжительности дня и ночи показывают, что растения и животные способны измерять время, т. е- они обладают так называемыми биологическими часами - эндогенными ритмами. Такая способность свойственна всем видам живых существ — от одноклеточных до человека. Ритмы, период которых равен или близок к 24 ч, называют циркадными. Летучие мыши покидают свои убежища каждый раз в одно и то же время — в сумерки — и сохраняют ритм активности даже в том случае, если они находятся в лабораторных условиях при полной темноте.

           У очень многих морских животных известны лунные ритмы. По мнению некоторых авторов, такие ритмы могут быть также у пресноводных и наземных видов.

           Лунные ритмы хорошо изучены у кольчатых червей — полихет. У островов Полинезии червь тихоокеанский пололо Eunice viridis появляется на поверхности моря в первые четверти лунных месяцев в октябре и ноябре в таком количестве, что морскую воду можно сравнить с супом из вермишели. Местные жители вылавливают их и употребляют в пищу.

           Приведем еще один пример лунных ритмов у животных. На песчаных пляжах Калифорнии рыба Leuresthes tenuis мечет икру через 3-4 дня после апрельских и июньских приливов. Эту маленькую рыбку, живущую обычно в открытом море, во время наиболее сильных ночных приливов волны выбрасывают на берег. Когда море отступает, рыбки зарываются в морской песок. Здесь самки откладывают икру. а самцы ее оплодотворяют. Со следующим приливом они возвращаются в море. Поскольку икра откладывается в период отлива после наиболее высоких приливов, вода не доходит до нее в течение двух недель и она может развиваться в морском песке без всяких перемещений. При следующем высоком приливе вышедшие из икринок личинки с волнами увлекаются в море. Причины столь замечательной синхронизации времени размножения и развития данного вида с периодами прилива и отлива, а также с лунными фазами, еще не выяснены.

           Побережье Индийского океана населяют полчища крабов-сигнальщиков. Во время прилива крабы белого цвета, а при отливе становятся серыми. Если взять краба-сигнальщика, предположим, за 15 мин до отлива, когда он еще белый, и поместить в холодильник, то его биологические часы "остановятся". После извлечения краба из холодильника он приобретает серую окраску через 15 мин. Таким образом, биологические часы краба-сигнальщика работают удивительно точно, с ошибкой разве что в несколько секунд.

Информация о работе Принцип действия экологического фактора. Изменение реакции организмов на действие экологического фактора