Автор работы: Пользователь скрыл имя, 21 Декабря 2010 в 00:30, контрольная работа
Методы очистки сточных вод можно разделить на механические, химические, физико-химические и биологические, когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примесей.
Гальванотехника – одно из производств, серьезно влияющих на загрязнение окружающей среды, в частности ионами тяжелых металлов, наиболее опасных для биосферы.
Ведение…………………………………………………………………………..3
1. Гальваническое производство……………………………...………………..4
2.Выбор и обоснование способов очистки сточных вод .…………...………11
3. Оптимальный метод очистки……………………………………………….20
Заключение………………………………………………………..……………26
Список использованной литературы……………………………..…………...27
2. Выбор и обоснование способов очистки сточных вод
Известно
большое количество методов извлечения
цветных металлов из сточных вод гальванопроизводства.
Наиболее используемые методы подразделяются:
-реагентные,
-биохимические,
-электрохимические,
-мембранные,
-сорбционные,
-комбинированные.
Реагентный метод:
Метод,
заключающийся в переводе растворимых
веществ в нерастворимые при добавлении
различных реагентов с последующим отделением
их в виде осадков.
В качестве
реагентов используют гидроксиды кальция
и
натрия, сульфиды натрия, феррохромовый
шлак, сульфат железа(II), пирит. Наиболее
широко для осаждения металлов используется
гидроксид кальция, который осаждает ионы
металла в виде гидроксидов:
Me n+ + nOH - = Me(OH)n
Наиболее
эффективным для извлечения цветных металлов
является сульфид натрия, т.к. растворимость
сульфидов тяжелых металлов значительно
ниже растворимости других труднорастворимых
соединений - гидроксидов и карбонатов.
Процесс извлечения металлов сульфидом
натрия выглядит так:
Me 2+ +S 2- =MeS ;
Me 3+ +S 2- =Me2S3 .
Достоинства метода:
1) Широкий интервал начальных концентраций
ИТМ.
2) Универсальность.
3) Простота эксплуатации.
4) Отсутствует необходимость в разделении
промывных вод
и концентратов.
Недостатки метода:
1) Не обеспечивается ПДК для рыбохозяйственных
водоемов.
2) Громоздкость оборудования.
3) Значительный расход реагентов.
4) Дополнительное загрязнение сточных
вод.
5) Невозможность возврата в оборотный
цикл очищенной
воды из-за повышенного солесодержания.
6) Затрудненность извлечения из шлама
тяжелых металлов
для утилизации.
7) Потребность в значительных площадях
для шламоотвалов.
Биохимический
метод:
В последнее время у нас в стране и за рубежом
увеличились масштабы проводимых исследований
по разработке технологии выделения тяжелых
цветных металлов из сточных вод гальванопроизводств
биохимическим методом сульфатовосстанавливающими
бактериями (СВБ). Однако достигнутое при
этом снижение концентраций ионов тяжелых
металлов, в частности таких, как хром,
составило только 100 мг/л, что нельзя признать
оптимальным, исходя из реальных концентраций
ионов шестивалентного хрома (200 - 300 мг/л).
Электрохимические методы:
Метод
наиболее пригоден для выделения
хрома. Сущность метода заключается
в восстановлении Cr(VI) до Cr(III) в процессе
электролиза с использованием растворимых
стальных электродов. При прохождении
растворов через межэлектродное пространство
происходит электролиз воды, поляризация
частиц, электрофорез, окислительно-восстановительные
процессы, взаимодействие продуктов электролиза
друг с другом.
Суть протекающих при этом процессов заключается
в
следующем: при протекании постоянного
электрического тока через хромсодержащие
растворы гальваношламов, анод подвергается
электролитическому растворению с образованием
ионов Fe, которые, с одной стороны, являются
эффективными восстановителями для ионов
хрома (VI), с другой - коагулянтами:
Cr 2O7 2- + 6Fe 2+
--> 6Fe 2+ + 2Cr3+
На катоде выделяется газообразный водород,
что ведет к
выщелачиванию раствора и созданию таким
образом условий для выделения гидроксидов
примесных металлов,также происходит
процесс электрохимического восстановления.
Достоинства метода
1) Очистка до требований ПДК от соединений
Cr (VI).
2) Высокая производительность.
3) Простота эксплуатации.
4) Малые занимаемые площади.
5) Малая чувствительность к изменениям
параметров
процесса.
6) Получение шлама с хорошими структурно-механическими
свойствами.
Недостатки метода
1) Не достигается ПДК при сбросе в водоемы
рыбохозяйственного назначения.
2) Значительный расход электроэнергии.
3) Значительный расход металлических
растворимых
анодов.
4) Пассивация анодов.
5) Невозможность извлечения из шлама тяжелых
металлов из-за высокого содержания железа.
6) Невозможность возврата воды в оборотный
цикл
из-за повышенного солесодержания.
7) Потребность в значительных площадях
для шламоотвалов.
8) Необходимость предварительного разбавления
стоков до
суммарной концентрации ионов тяжелых
металлов 100 мг/л.
Метод электрофлотации:
Позволяют очищенную сточную воду вернуть
в производство и рекуперировать ценные
компоненты. В этом процессе очистка сточных
вод от взвешенных частиц происходит при
помощи пузырьков газа, образующихся при
электролизе воды и использовании растворимых
электродов. На аноде возникают пузырьки
кислорода,на катоде - водород. Поднимаясь
в сточной воде, пузырьки флотируют взвешенные
частицы.
Достоинства метода
1) Очистка до требований ПДК.
2) Незначительный расход реагентов.
3) Простота эксплуатации.
4) Малые площади, занимаемые оборудованием.
5) Возможность возврата ИТМ до 96%.
6) Возможность очистки от жиров, масел
и взвешенных
частиц.
7) Высокая сочетаемость с другими методами.
8) Отсутствие вторичного загрязнения.
Недостатки метода
1) Незначительное (до 30%) снижение общего
солесодержания очищаемых стоков.
2) Аноды из дефицитного материала.
3) Необходимость разбавления концентрированных
вод.
4) Большой расход электроэнергии, ее дороговизна.
Метод электролиза
В качестве анодов используют различные
электрически нерастворимые вещества:
графит, магнетит, диоксиды свинца, марганца
и рутения, которые наносят на титановую
основу. Катоды изготавливают из молибдена,
сплава железа с вольфрамом, сплава вольфрама
с никелем, из графита, нержавеющей стали
и других металлов, покрытых молибденом,
вольфрамом или их сплав
Достоинства метода
1) Отсутствие шлама.
2) Незначительный расход реагентов.
3) Простота эксплуатации.
4) Малые площади, занимаемые оборудованием.
5) Возможность извлечения металлов из
концентрированных
стоков.
Недостатки метода
1) Не обеспечивает достижение ПДК при
сбросе в водоемы рыбохозяйственного
назначения.
2) Аноды из дефицитного материала.
3) Неэкономичность очистки разбавленных
стоков.
Метод обратного
осмоса
Обратным осмосом
и ультрафильтрацией называют процессы
фильтрования растворов через полупроницаемые
мембраны под давлением, превышающем осмотическое
давление. Мембраны пропускают молекулы
растворителя, задерживая растворенные
вещества. При обратном осмосе выделяются
частицы (молекулы, гидратированные ионы),
размеры которых не превышают размеров
молекул растворителя. При ультрафильтрации
размер отдельных частиц на порядок больше.
Достоинства метода
1) Возможность очистки до требований ПДК.
2) Возврат очищенной воды до 60% в оборотный
цикл.
3) Возможность утилизации тяжелых металлов.
4) Возможность очистки в присутствии лигандов,
образующих прочные комплексные соединения.
Недостатки метода
1) Необходимость предварительной очистки
сточных вод от масел, ПАВ, растворителей,
органики, взвешенных веществ.
2) Дефицитность и дороговизна мембран.
3) Сложность эксплуатации, высокие требования
к
герметичности установок.
4) Большие площади, высокие капитальные
затраты.
5) Отсутствие селективности.
6) Чувствительность мембран к изменению
параметров
очищаемых стоков.
2.4.2 Метод
электродиализа
Электродиализ
- это метод, основанный на избирательном
переносе ионов через перегородки, изготовленные
из ионитов (мембраны) под действием электрического
тока. Обычно используют пакеты из чередующихся
анионо- и катионообменных мембран. Ионообменные
мембраны проницаемы только для ионов,
имеющих заряд того же знака, что и у подвижных
ионов.
Достоинства метода
1) Возможность очистки до требований ПДК.
2) Возврат очищенной воды до 60% в оборотный
цикл.
3) Возможность утилизации ценных компонентов.
4) Отсутствие фазовых переходов при отделении
примесей,
что позволяет вести процесс при небольшом
расходе энергии.
5) Возможность проведения при комнатных
температурах без
применения или с небольшими добавками
химических реагентов.
6) Простота конструкций аппаратуры.
Недостатки метода
1) Необходимость предварительной очистки
стоков от масел, ПАВ, органики, растворителей,
солей жесткости, взвешенных веществ.
2) Значительный расход электроэнергии.
3) Дефицитность и дороговизна мембран.
4) Сложность эксплуатации.
5) Отсутствие селективности.
6) Чувствительность к изменению параметров
очищаемых
вод
2. Адсорбционный метод:
В качестве сорбентов используются активированные
угли, синтетические сорбенты, отходы
производства (зола, шлаки, опилки и др.).
Процесс адсорбционного извлечения шестивалентного
хрома
из сточных вод ведут при интенсивном
перемешивании
адсорбента с раствором, при фильтровании
раствора через слой
адсорбента или в псевдоожиженном слое
на установках
периодического и непрерывного действия.
При смешивании
адсорбента с раствором используют активированный
уголь в
виде частиц диаметром 0,1 мм и меньше. Процесс
проводят в одну или несколько ступеней.
Достоинства метода
1) Очистка до ПДК.
2) Возможность совместного удаления различных
по природе
примесей.
3) Отсутствие вторичного загрязнения
очищаемых вод.
4) Возможность рекуперации сорбированных
веществ.
5) Возможность возврата очищенной воды
после
корректировки рН.
Недостатки метода
1) Дороговизна и дефицитность сорбентов.
2) Природные сорбенты применимы для ограниченного
круга
примесей и их концентраций.
3) Громоздкость оборудования.
4) Большой расход реагентов для регенерации
сорбентов.
5) Образование вторичных отходов, требующих
дополнительной очистки.
Метод ионного обмена:
Ионообменное извлечение металлов из сточных вод позволяет рекуперировать ценные вещества с высокой степенью извлечения. Ионный обмен – это процесс взаимодействия раствора с твердой фазой, обладающей свойствами обменивать ионы, содержащиеся в ней, на ионы, присутствующие в растворе. Вещества, составляющие эту твердую фазу, называются ионитами. Метод ионного обмена основан на применении катионитов и анионитов, сорбирующих из обрабатываемых сточных вод катионы и анионы растворенных солей. В процессе фильтрования обменные катионы и анионы заменяются катионами и анионами, извлекаемыми из сточных вод. Это приводит к истощению обменной способности материалов и необходимости их регенерации.
Достоинства метода
1) Возможность очистки до требований ПДК.
2) Возврат очищенной воды до 95% в оборот.
3) Возможность утилизации тяжелых металлов.
4) Возможность очистки в присутствии эффективных
лигандов.
Недостатки метода
1) Необходимость предварительной очистки
сточных вод от масел, ПАВ, растворителей,
органики, взвешенных веществ.
2) Большой расход реагентов для регенерации
ионитов и
обработки смол.
3) Необходимость предварительного разделения
промывных
вод от концентратов.
4) Громоздкость оборудования, высокая
стоимость смол
5) Образование вторичных отходов-элюатов,
требующих
дополнительной переработки.
3. Оптимальный метод очистки
Как видно из анализа в настоящее время имеется достаточно широкий ассортимент методов, позволяющих перерабатывать сточные воды гальванопроизводства с получением пригодного для дальнейшего использования продукта и оборотной воды. Однако ни один метод нельзя считать универсальным, т.е. эффективным и дешевым, поэтому наиболее целесообразно применять комбинированные методы.
Этот метод имеет ряд преимуществ :
1)повышение степени очистки достигается путем дополнения реагентного метода очистки адсорбционным (ионным);
2)снижение на 65-70 % общего солесодержания сточных вод;
3)возможность
использования сточных вод в
оборотном водоснабжении
4)возможность
автоматизированного контроля
5)простота и надежность в эксплуатации.
Хромсодержащие
соединения поступают в сборник усреднитель
где смешиваются с промывными водами,
после чего промывные хромсодержащие
сточные воды обезвреживаются реагентным
методом с использованием сульфида натрия(реагент).
После чего сточные воды снова направляются
в сборник усреднитель, после чего корректируется
PH среды и воды поступают на осветление,
где отделяется шлам соединений металлов.
После этих действий шлам уплотняется
и обеззараживается, после чего утилизируется.
Осветленная сточная вода направляется
на дополнительное фильтрование, после
чего поступает в угольный фильтр где
дополнительно извлекаются растворимые
примеси, включая соли хрома, затем для
доочистки используется ионный метод,
с помощью Na-катионита и H-катионита в аппаратах
катионитной очистки, следующие действия
нейтрализация, усреднение, обезвреживание
и утилизация. Общая схема очистки
изображена на рисунке.
Рис.1
Схема очистных сооружений гальванических
стоков.
Описание технологической схемы очистных сооружений комплексной очистки
Информация о работе Очистка сточных вод гальванических производств