Очистка грунтовых вод, загрязненных промышленным предприятием

Автор работы: Константин Акулинин, 22 Сентября 2010 в 15:00, курсовая работа

Краткое описание

В большинстве случаев загрязнение пресных вод остаётся невидимым, поскольку загрязнители растворены в воде. Но есть и исключения: пенящиеся моющие средства, а также плавающие на поверхности нефтепродукты и неочищенные стоки. Есть несколько природных загрязнителей. Находящиеся в земле соединения алюминия попадают в систему пресных водоёмов в результате химических реакций. Паводки вымывают из почвы лугов соединения магния, которые наносят огромный ущерб рыбным запасам. Однако объём естественных загрязняющих веществ ничтожен по сравнению с производимыми человеком. Ежегодно в водные бассейны попадают тысячи химических веществ с непредсказуемым действием, многие из которых представляют собой новые химические соединения. В воде могут быть обнаружены повышенные концентрации токсичных тяжелых металлов (как кадмия, ртути, свинца, хрома), пестициды, нитраты и фосфаты, нефтепродукты, поверхностно-активные вещества (ПАВы). Как известно, ежегодно в моря и океаны попадает до 12 млн тонн нефти. Определенный вклад в повышение концентрации тяжелых металлов в воде вносят и кислотные дожди. Они способны растворять в грунте минералы, что приводит к увеличению содержания в воде ионов тяжелых металлов. С атомных электростанций в круговорот воды в природе попадают радиоактивные отходы. Сброс неочищенных сточных вод в водные источники приводит к микробиологическим загрязнениям воды. По оценкам Всемирной организации здравоохранения (ВОЗ) 80 % заболеваний в мире вызваны неподобающим качеством и антисанитарным состоянием воды. В сельской местности проблема качества воды стоит особенно остро — около 90 % всех сельских жителей в мире постоянно пользуются для питья и купания загрязненной водой.

Содержание работы

ВВЕДЕНИЕ……………………………………………………………………………………………..3
ТЭЦ………………………………………………………………………………………………………4
ПРОБЛЕМЫ г. МОСКВЫ. ПОДЗЕМНЫЕ ВОДЫ И ЗДОРОВЬЕ НАСЕЛЕНИЯ………………... 8
КАЧЕСТВО ПИТЬЕВОЙ ВОДЫ ……………………………………………………………………12
АНАЛИЗ ГИДРОГЕОЛОГИЧЕСКОГО РАЗРЕЗА ДОЛИНЫ РЕКИ КОЗЛОВКА 18
АНАЛИЗ КАРТЫ ГИДРОИЗОГИПС ……………………………………………………………….19
БАЛАНС ПОДЗЕМНЫХ ВОД……………………………………………………………………….20
ХИМИЧЕСКИЙ СОСТАВ ПОДЗЕМНЫХ ВОД……………………………………………………21
УСТАНОВКА ОЧИСТКИ СТОЧНЫХ ВОД В РАЙОНЕ ТЭЦ…………………………………….23
ЗАКЛЮЧЕНИЕ……………………………….………………………………………………23

Содержимое работы - 1 файл

курсовая моя.doc

— 230.50 Кб (Скачать файл)

     Щелочные металлы. Из ионов щелочных металлов в воде наиболее распространены Na и К, попадающие в воду в результате растворения коренных пород. Основным источником натрия в природных водах являются залежи поваренной соли. В природных водах натрия содержится больше, чем калия. Это объясняется лучшим поглощением последнего почвами, а также большим извлечением его из воды растениями.

     Жесткость воды. Жесткость природных вод обусловливается наличием в них солей кальция и магния. Ионы Са2+ поступают в воду при растворении известняков под действием содержащейся в воде углекислоты водой гипса

    СаС03 + Н20 + С02 <± Са2+ + 2НСОо

.

     Основным источником ионов магния служат доломиты, также растворяющиеся водой в присутствии углекислоты.

     Хотя указанные соли и не являются особо вредными для организма, наличие их в воде в больших количествах нежелательно, так как вода становится непригодной для хозяйственно-питьевых нужд и промышленного водоснабжения. В жесткой воде плохо развариваются овощи, перерасходуется мыло при стирке белья. Жесткая вода непригодна для питания паровых котлов; ее нельзя использовать во многих отраслях промышленности .

     Общая жесткость воды представляет собой суммы карбонатной (временной) и некарбонатной (постоянной) жесткости.

     Карбонатная жесткост ь, связанная с присутствием в воде в основном гидрекарбонатов кальция или магния, почти полностью удаляется при кипячении воды. Гидрокарбонаты при этом распадаются с образованием углекислоты, в осадок выпадают карбонаты кальция и гидроксид магния.

    Некарбонатная жесткость обусловливается присутствием кальциевых и магниевых солей серной, соляной •и азотной кислот и кипячением не устраняется.

     Жесткость воды представляет сумму эквивалентных концентраций ионов Са2+ и Mg2+ и выражается в миллиграмм-эквивалентах на 1 л; 1 мг-экв/л жесткости отвечает 20,04 мг/л  ионов  Са'2+  или 12,16 мг/л ионов Mg2+.

    Железо и марганец. Железо в природных водах может находиться в виде ионов Fe2 и Fe3, неорганических (Fe(OH)3, Fe(OH)2, FeS) и органических коллоидов, комплексных соединений (главным образом органических комплексных соединений железа) и тонкодисперсной взвеси (Fe(OH)3, Fe(OH)2, FeS). В поверхностных водах железо содержится в виде органических комплексных соединений, коллоидов или тонкодисперсных взвесей. В подземных водах при отсутствии растворенного кислорода железо обычно находится в виде солей железа (II). Форма, в которой присутствуют в природных водах железо и марганец, зависит от величины рН и содержания кислорода.

    Обычно содержание железа и марганца не превышает нескольких десятков миллиграммов в 1 л воды. Хотя вода, содержащая и более высокие количества этих ионов, совершенно безвредна для здоровья, все же для питьевых, промышленных и хозяйственных целей она непригодна, так как имеет неприятный чернильный или железистый привкус.

     Наличие в воде железа и марганца может приводить к развитию в трубопроводах железистых и марганцевых бактерий, использующих в процессе своей жизнедеятельности энергию, выделяемую при окислении соединений с низшей в соединения с высшей валентностью. Продукты жизнедеятельности бактерий накапливаются в таких количествах, что могут значительно уменьшить сечение водопроводных труб, а иногда и полностью их закупорить.

     Соединения кремния. Кремний присутствует в природных водах в виде минеральных и органических соединений. Выщелачивание силикатных пород обогащает природные воды кремниевой кислотой и ее солями. Кремниевая кислота очень слабая и диссоциирует на ионы в незначительной степени.

 Наличие соединений кремния в питьевой воде не вредно для здоровья. Если же вода используется для питания паровых котлов высокого давления, содержание самого незначительного количества кремниевой кислоты недоступно из-за образования плотной силикатной накипи.

     Соединения фосфора. Фосфор встречается в воде в виде ионов ортофосфорной кислоты или органического комплекса, а также в виде взвешенных частиц органического и минерального происхождения. Соединения фосфора содержатся в природных водах в ничтожных количествах, однако имеют огромное значение для развития растительной жизни в водоемах.

     Растворенные в воде газы. Из растворенных в воде газов наиболее важными для оценки ее качества являются углекислота, кислород, сероводород, азот и метан. Углекислота, кислород и сероводород при определенных условиях придают воде коррозийные свойства по отношению к бетону и металлам.

     Углекислота встречается в больших или меньших количествах во всех природных водах. Подземные воды обогащаются углекислотой за счет разложения органических соединений в воде и почвах, а также вследствие протекающих в глубине геохимических процессов.

     Уменьшение содержания С02 в природных водах может происходить благодаря выделению углекислоты в атмосферу, растворению карбонатных  пород с образованием гидрокарбонатов или в результате фотосинтеза.

     Агрессивные свойства углекислоты основаны на ее способности взаимодействовать с карбонатными породами и переводить их в растворимые в воде гидрокарбонаты, а также на некотором снижении рН среды, в результате чего усиливается электрохимическая коррозия некоторых металлов, например железа.

     Углекислота не является коррозионным агентом, непосредственно воздействующим на металл. Действие ее заключается в растворении карбонатов составных частей ржавокарбонатных отложений, которые образуются в водопроводной сети. В результате этого процесса происходят дальнейшая коррозия материала труб и образование новых отложений; вода приобретает желтую или красноватую окраску, неприятный вкус и содержит мелкие комья рыхлых железистых веществ.

     Кислород может находиться в природных водах в различных концентрациях (0—14,6 мг/л), что определяется интенсивностью противоположно направленных процессов, влияющих на содержание кислорода в воде. Обогащение воды кислородом происходит за счет растворения его из воздуха (в соответствии с парциальным давлением кислорода и температурой воды) и выделения водной растительностью в процессе фотосинтеза

     Окисление некоторых примесей воды, гниение органических остатков, брожение, дыхание организмов понижают содержание кислорода в воде. Резкое уменьшение содержания кислорода в воде по сравнению с нормальным свидетельствует о ее загрязнении.

     Определение концентрации кислорода имеет большое значение при изучении физико-химического режима водоема, его самоочищения и биологической жизни.

     Кислород интенсифицирует процессы коррозии металлов, поэтому в водах, которые используются для теплоэнергетических систем, количество растворенного кислорода лимитируется.

     Сероводород попадает в природные воды в результате их соприкосновения с гниющими органическими остатками (сероводород органического происхождения) либо с некоторыми минеральными солями (гипсом, серным колчеданом и др.). Последние, восстанавливаясь и разлагаясь, выделяют сероводород (сероводород неорганического происхождения).

     Наличие в воде сероводорода органического происхождения свидетельствует о загрязненности водоисточника.

     Сероводород необходимо удалять из воды, используемой для хозяйственно-питьевого или промышленного водоснабжения.

     Азот попадает в природные воды при поглощении его из воздуха, восстановлении соединений азота денитрифицирующими бактериями, а также в результате разложения органических остатков. Несмотря на меньшую по сравнению с кислородом растворимость азота содержание последнего в природных водах больше из-за более высокого парциального давления его в воздухе.

     Метан образуется в воде иногда в очень значительных количествах при разложении микробами клетчатки растительных остатков.

     Микроэлементы. Наряду с органическими и минеральными примесями и загрязнениями, которые находятся в природных водах в относительно больших количествах, в последних содержится ряд химических элементов в самых ничтожных дозах (иод, бром, фтор, селен, теллур и др.) . В отличие от других примесей природных вод эти элементы почти не контролируются, хотя в настоящее время установлено, что ониоказывают большое влияние на здоровье человека.

     Для нормальной жизнедеятельности человеческого организма содержание перечисленных элементов в воде должно находиться в строго определенных пределах. При нарушении этих пределов могут возникать массовые заболевания, называемые геохимическими эндемиями.

     Например, установлена суточная потребность организма в иоде и фторе. Человек ежесуточно должен потреблять 0,06— 0,10 мг иода. Отсутствие или недостаток его в питьевой воде и пище нарушает нормальную деятельность щитовидной железы и приводит к тяжелому заболеванию — эндемическому зобу.

     Содержание фтора в питьевой воде должно находиться в пределах 0,7— 1,5 мг/л. Недостаточное или избыточное содержание его в воде одинаково вредно и вызывает разрушение зубов и изменения в костях скелета.

     Радиоактивные элементы. К примесям природных вод относятся и радиоактивные элементы. Допустимым пределом радиоактивности в обычной питьевой воде считается10-8—10-9 мкКи/л. Радиоактивность некоторых минеральных вод достигает 2,8 •10-3 мкКи/л.

     Ядовитые вещества попадают в воду с промышленными отбросами и канализационными сточными водами населенных пунктов, а также при умышленном отравлении водоема. Токсическая концентрация таких веществ обычно достигается уже при содержании их в количестве нескольких миллиграммов (редко одного-двух десятков миллиграммов) в 1 л воды. К этой группе веществ относятся свинец,, цинк, медь, мышьяк, ртуть и др., а также органические вещества, называемые отравляющими (ОВ).

     Свинец, медь и цинк попадают в воду главным образом с промышленными сточными водами. Наиболее ядовитыми из этих металлов является свинец, который накапливается в организме и может вызвать опасное отравление.

     Вода, подаваемая населению, не должна содержать более 0,03 мг/л свинца, 1 мг/л меди и 5 мг/л цинка. Определение содержания этих металлов требуется лишь в тех случаях, когда предполагается наличие их в источнике водоснабжжения.

     Мышьяк в очень небольших концентрациях может поступать в воду из почв, содержащих его соли. В значительных количествах он был обнаружен в некоторых минеральных водах. В открытые водоемы мышьяк попадает со сточными водами населенных пунктов и промышленных предприятий (от дубильных цехов кожевенных заводов, красильных, ситцепечатных фабрик, металлообрабатывающих заводов и т. д.). Его содержание в питьевой воде не должно превышать 0,05 мг/л.

     Известны ОВ самого различного действия, однако, попадая в воду, они ведут себя в основном как общеядовитые. На зараженность воды ОВ могут указывать некоторые внешние признаки и данные обычных методов контроля, так как наличие ОВ вызывает изменение многих показателей качества воды, например рН, окисляемое, хлоропоглощаемости, содержания хлоридов и растворенного кислорода, а также данные биологических и бактериологических исследований. Поэтому все перечисленные показатели в условиях отравления воды ОВ должны определяться и фиксироваться систематически.

АНАЛИЗ  ГИДРОГЕОЛОГИЧЕСКОГО  РАЗРЕЗА ДОЛИНЫ РЕКИ КОЗЛОВКА

  При изучении гидрогеологических условий в первую очередь составляются гидрогеологические разрезы.Они необходимы при проведении любых видов гидрогеологических исследований.  Гидрогеологические разрезы обычно прилагаются к картам, поясняя и дополняя их.

     Перечислим основные положения, которые должны быть отмечены при этом описании.

  1. Характер водоносных горизонтов и условия их залегания устанавливаются из анализа литологического состава пород и данных водопроявлений по скважинам, шурфам и источникам. Н а порный горизонт характеризуется наличием выдержанных водоупорных толщ в кровле и в подошве водосодержащего пласта и избыточного напора воды над кровлей пласта. Последний проявляется в том, что уровни, встреченные при бурении и вскрытии водоносного горизонта, поднимаются и устанавливаются выше верхней границы, или кровли, пласта (так называемые установившиеся напорные уровни). Положение установившихся напорных уровней по скважинам определяет положение пьезометрической кривой. Для любого сечения составленного разреза по этим данным можно определить мощность потока как разность отметок кровли и подошвы водоносного пласта, глубину вскрытия напорного водоносного горизонта как разность между отметками поверхности земли и кровли водосодержащего пласта,   ожидаемый установившийся уро вень напорных вод при бурении скважины как разность между отметкой поверхности земли и пьезометрической кривой. Величина напора над кровлей определяется разностью отметок между установившимся уровнем и кровлей пласта. По разрезу можно выявить участки возможного самоизлива, приуроченные к зонам, где поверхность земли располагается ниже пьезометрической кривой.

Информация о работе Очистка грунтовых вод, загрязненных промышленным предприятием