Общая характеристика отходов

Автор работы: Пользователь скрыл имя, 29 Сентября 2011 в 16:04, реферат

Краткое описание

Цель же данной работы заключается в рассмотрении основных ныне существующих и перспективных способов утилизации и переработки промышленных отходов. Достижение глобальной цели в процессе выполнения работы достигалось рассмотрением локальных задач. Во-первых, дать понятие промышленных отходов и рассмотреть их классификацию по различным критериям: по их химической природе, технологическим признакам образования, возможности дальнейшей переработке и использования и степени их токсичности. Во-вторых, охарактеризовать способы утилизации, переработки и, при необходимости, условий их захоронения. В-третьих, рассмотреть возможность комплексного использования отходов промышленности как в целом в промышленности, так и на примере металлургического, топливно-энергетического и химического комплексов.

Содержание работы

ВВЕДЕНИЕ 2
1. Общая характеристика отходов промышленности 3
1.1. Основные понятия отходов 3
1.2. Классификация отходов промышленности 3
2. Методы хранения отходов промышленности 6
2.1. Использование хранилищ промышленных отходов 6
2.1.1 Хранение взрывоопасных отходов 6
2.2. Наземные полигоны 7
3. Термическое обезвреживание токсичных промышленных отходов 8
3.3.1 Окислительный пиролиз 8
3.3.2 Сухой пиролиз 9
3.4 Огневая переработка 9
3.5 Переработка и обезвреживание отходов с применением плазмы 10
4. Разработка малоотходных и безотходных технологий и методов комплексного использования отходов промышленности 12
4.1. Металлургия 13
4.2. Топливно-энергетический комплекс 14
4.3. Химический комплекс 15
ЗАКЛЮЧЕНИЕ 17
СПИСОК ЛИТЕРАТУРЫ 18

Содержимое работы - 1 файл

kursovik othody.doc

— 193.50 Кб (Скачать файл)

    Шахтные породы часто содержат большое число  микроэлементов, необходимых для  питания растений, поэтому могут  применяться в качестве удобрений  почв, разбалансировка которых происходит в результате интенсификации и химизации сельского хозяйства [11].

    Отходы  углеобогащения, содержащие большое  количество горючей массы, могут  быть подвергнуты дополнительному  обогащению с получением кондиционного  по зольности твердого топлива или  непосредственно использованы для сжигания и газификации. Возможно сжигание высокозольных отходов углеобогащения в пылеватом состоянии на электростанциях, в том числе на крупных, при этом уменьшаются выбросы  SOX и NOX в окружающую среду. В некоторых зарубежных странах нашли применение плазменные печи для переплавки легированных отходов и восстановительной плавки. Для этой цели разработаны и используются разнообразные генераторы плазмы и дуговые плазменные горелки разной мощности, где возможно восстановление руд отходами углеобогащения и выработка некоторого количества электроэнергии за счет отходящих газов.[29]

    В результате гравитационной сепарации  некоторых углей можно определить высокозольные фракции, в которых  содержатся ряд микроэлементов (Ag, As, Cd, Mn, Mo, Ni, Pb и другие) в 1.3 – 1.4 раза выше, чем в исходных углях. Бóльшая часть микроэлементов может быть извлечена из продуктов термической обработки или обогащения твердого горючего.

    С помощью биологических методов  можно извлекать из углей и  части угольных отходов пиритную и органическую серу, различные металлы (Mn, Ni, Co, Zn, Ca, Al, Cd) золу, кислород- и азотсодержащие соединения. Очистка угля может осуществляться за 6 суток на 93 % при применении термофильных бактерий и 18 суток мезофильными бактериями.[11]

    В связи с грядущим  в ближайшие десятилетия истощением запасов угля, нефти, природного газа возникла потребность поиска менее дорогих, но технологически более простых в переработке и использование. Важнейшим, в связи с этим, источником для восполнения энергобаланса, производства чистых энергосистем и многих, остро необходимых стране продуктов становятся горючие сланцы. Из сланцев можно получить [11]: мазут, автомобильный бензин, газ для бытовых нужд, жидкое синтетическое топливо. 
 

4.3. Химический комплекс

 

    Из  всех видов минерального сырья особое место занимают агрохимические фосфорсодержащие руды, от которых в значительной мере зависит плодородие почв, а с учетом истощения богатого фосфором сырья важнейшей проблемой является эффективное использование полезных компонентов недр и руды.

    Значение  фосфора в природе крайне важно. Минеральный фосфор входит в состав костной ткани позвоночных и  наружных скелетов ракообразных и моллюсков. Фосфор присутствует в мягких тканях растений и животных. Фосфорсодержащие органические соединения обеспечивает превращение химической энергии в механическую энергию мышечных тканей. Этот элемент входит в состав нуклеиновых кислот, регулирующих наследственность и развитие организмов.

    Производство  фосфорных минеральных удобрений  – главная сфера применения фосфатного сырья. Более полная выемка попутных полезных компонентов из фосфоритов и апатитов путем флотации, т.е. использовать различную плотность материалов относительно плотности воды.

    Один  из важнейших попутных компонентов  апатитовых руд  – нефелин1.

    Еще  один  минерал, имеющий большое  значение и содержащийся в апатитовых рудах, – сфен. В состав данного  соединения входит титан (CaTiSiO4(O,OH,F)), а диоксид титана – важный компонент при производстве лакокрасочных изделий. Перспективность сфена как сырья связана с большими запасами этого минерала в нашей стране (главным образом в Хибинах [11]) и, с учетом комплексной переработки апатитовых руд, низкой себестоимостью содержащегося в них TiO2.

    В настоящее время существуют различные  технологические системы и способы переработки сфенового концентрата: хлорная; азотнокислая; сернокислая; спекание с поваренной солью, кремнефторидом, сульфатом аммония. Однако наиболее приемлемой является сернокислая технология, когда как другие методы очень сложны и не получили промышленного развития.

    Оптимально  сфеновый концентрат разлагается при  использовании 50 – 55 %-ой серной  кислоты  с  расходом  1.5  т  на 1 т концентрата  и протекании процесса в течение 20 – 30 часов и в температурных  условиях 130° С. В результате получается 1 т товарного TiO2  на каждые 4 т сфенового концентрата и 6 т серной кислоты. 

    В нашей стране и за рубежом проводятся работы по получению из горючих сланцев  битумов, масляных антисептиков для  древесины, ядохимикатов, серы, гипосульфита, бензола, лаков, клеев, дубителей, шлаковой ваты, матов для строительной индустрии, портландцемента и многого другого. [11]

    В химической промышленности также используются отходы производства диметилтереоргалата  для синтеза алкидных полимеров. Отходы катализаторов производства мономеров используется в строительных лакокрасочных пигментах. Отходы гидроксилсодержащих соединений от производства ксилита идут на изгототовление простых и сложных олигоэфиров – компонентов лакокрасочных материалов, отходы производства меланина – ПАВ-диспергаторов. Катализаторы алкинирования бензола изготавливаются из аллюминесодержащих отходов кабельной промышленности. Отходы производства капролактама – компоненты смазочных материалов или пластифицирующие добавки к бетонным смесям. Из катализаторов нефтепереработки выделяются металлические компоненты: Mo(SO4)3, VO5, тригидрит оксида алюминия, Ni-Mo концентрат и др. Возможно использование кислых гудронов для выработки из воды аммонийных солей, пригодных для использования, как в пресной воде, так и в морской. Кислые гудроны можно применять совместно с нефтяными шлаками в дорожном и коммунальном строительстве.[28]

 

ЗАКЛЮЧЕНИЕ

    Подводя итог всему вышесказанному, можно  сказать, что, несмотря на длительность изучения настоящей проблемы, утилизация и  переработка  отходов  промышленности  по-прежнему не ведется на должном уровне.

    Острота проблемы, несмотря на достаточное  количество путей решения, определяется увеличением уровня образования  и накопления промышленных отходов. Усилия зарубежных стран направлены, прежде всего, на предупреждение и минимизацию образования отходов, а затем на их рециркуляцию, вторичное использование и разработку эффективных методов окончательной переработки, обезвреживания и окончательного удаления, а захоронения только отходов, не загрязняющих окружающую среду. Все эти мероприятия, бесспорно, уменьшают уровень негативного  воздействия отходов промышленности на природу, но не решают проблему прогрессирующего их накопления в окружающей среде и, следовательно, нарастающей опасности проникновения в биосферу вредных веществ под влиянием техногенных и природных процессов. Разнообразие продукции, которая при современном развитии науки и техники может быть безотходно получена и потреблена, весьма ограничено, достижимо лишь на ряде технологических цепей и только высокорентабельными отраслями и производственными объединениями.

    Несмотря  на длительную ориентацию промышленности нашей страны на ресурсосберегающие технологии, отображало это скорее экономические цели производства, нежели предотвращение вредного воздействия на природу. В СССР на уровне Госснаба была разработана система сбора вторичных ресурсов: макулатуры, текстиля, пиломатериалов, битого стекла, пищевой кости, металлолома и др. – главным образом бытовых отходов.

    Ранее считавшееся перспективным способом снижения загрязнения окружающей среды сжигание токсичных бытовых и промышленных отходов, при котором исключение загрязнения окружающей среды высокотоксичными веществами, возможно только на крайне специальных дорогостоящих заводах, не окупающих в результате своей деятельности затраты на строительство и эксплуатацию. Движение к минимизации негативного воздействия промышленных отходов на окружающую среду следует осуществлять по двум магистральным направлениям:

    • Технологическое – повышение экологической безопасности производства;
    • Экозащитное – стабилизация и изоляция опасных отходов от природной среды.

    Многостороннее  и глубокое решение проблемы утилизации и переработки промышленных отходов  – длительный и кропотливый процесс, которым предстоит заниматься ряду поколений ученых, инженеров, техников, экологов, экономистов, рабочих разного профиля и многих других специалистов. 

 

СПИСОК ЛИТЕРАТУРЫ

  1. Багрянцев Г.И., Черников В.Е. Термическое обезвреживание и переработка промышленных и  бытовых отходов // Муниципальные и промышленные отходы: способы обезвреживания и вторичной переработки - аналитические обзоры. Новосибирск, 1995, серия Экология.
  2. Байкулатова К.Ш. Вторичное сырье - эффективный резерв материальных ресурсов. Алма-Ата, Казахстан, 1982.
  3. Безотходная технология. М., Знание, 1983.
  4. Бернадинер М.Н., Шурыгин А.П. Огневая переработка и обезвреживание промышленных отходов. М., Химия, 1990.
  5. Вредные вещества в промышленности. Л., Химия, 1967.
  6. Глоба В.Н., Яковлев Е.И., Борисов В.В. Строительство и эксплуатация подземных хранилищ. Киев: Будивельник, 1985.
  7. Дмитриев В.И., Коршунов Н.Н., Соловьев Н.И. Термическое обезвреживание отходов хлорорганических производств // Химическая технология, 1996, №5.
  8. Избавление биосферы от токсичных отходов. Проблемы и пути ее эффективного решения. Соликамск, 1995.
  9. Инструкции о порядке единовременного учета образования и обезвреживания токсичных отходов. М, 1990.
  10. Комплексное использование сырья в промышленности. Хайбулина Н.Е. Челябинск, Южноуральское книжное издательство, 1986.
  11. Комплексное использование сырья и отходов. Равич Б.М., Окладников В.П., Лыгач В.Н. и др. М., Химия, 1988.
  12. Крапивина С.А. Плазмохимические технологические процессы. Л., Химия, 1981.
  13. Ласкорин Б.Ч и др. Безотходные технологии переработки минерального сырья. М., Недра, 1984.
  14. Литвинов В.К., Дмитриев С.А., Киярв Ч.А.  и др. Плазменная шахтная печь для переработки радиоактивных отходов средней и низкой активности. Магнитогорск, Магнитогорский горно-металлургический институт, НПО "Радон", 1993.
  15. Лукашов В.П., Янковский А.И. Переработка и обезвреживание промышленных и бытовых отходов с применением низкотемпературной плазмы. //Муниципальные и промышленные отходы: способы обезвреживания и вторичной переработки - аналитические обзоры. Новосибирск, 1995, серия Экология.
  16. Максимов И.Е. Состояние и перспективы использования экозащитных систем в решении проблем отходов // Муниципальные и промышленные отходы: способы обезвреживания и вторичной переработки - аналитические обзоры. Новосибирск, 1995, серия Экология.
  17. Малоотходные и безотходные технологии. Материалы конференции. М.: Секретариат, 1990.
  18. Наркевич И.П., Печковский В.В. Утилизация и ликвидация отходов технологии органических веществ. М.: Химия, 1984.
  19. Подземные ядерные взрывы… для улучшения экологической обстановки. ВасильевА.П., Приходько Н.К., Симоненко В.А. // Природа, 1991, №2.
  20. Порядок накопления, транспортировки, обезвреживания и захоронения токсичных промышленных отходов. М.: Минздрав СССР, 1985.
  21. Размещение промышленных отходов в подземных хранилищах. Пермь, ПГТУ, 1995.
  22. Снуриков А.П. Комплексное использование сырья в цветной металлургии. М.: Металлургия, 1986.
  23. Термические методы обезвреживания отходов. Беспамятнов Г.П., Ботушевская К.К., Зеленская Л.А. Л., Химия, 1975.
  24. Торопкина Г.Н., Калинкина Л.И. Технико-экологические показатели промышленной очистки газообразных выбросов органических веществ. М., 1983.
  25. Управление процессами обработки производственных отходов. М. 1991.
  26. Фокин А.В., Коломиец А.Ф. Диоксины - проблема научная или социальная? // Природа, 1985, №3.
  27. Фролов К.И., Шайдуров В.С. Химическая и технологическая защиты окружающей среды. Л., ГИПХ, 1980.
  28. Хмельницкий А.Г. Использование вторичных материальных ресурсов в качестве сырья для промышленности // Муниципальные и промышленные отходы: способы обезвреживания и вторичной переработки - аналитические обзоры. Новосибирск, 1995, серия Экология.
  29. Шпирт М.Л. Безотходные технологии. Утилизация отходов добычи и переработки твердых горючих ископаемых. М., Недра, 1986.

Информация о работе Общая характеристика отходов