Автор работы: Пользователь скрыл имя, 25 Января 2012 в 16:37, реферат
В государственных стандартах приведено более 700 веществ, для которых установлено ПДК. Риском последствий (R) ,обуславливающих возникновение профессиональных заболеваний является присутствие в рабочей зоне токсических веществ, концентрация которых превышает ПДК, т.е. R ПДК Риском последствий при остром отравлении вредными отравляющими веществами и сильнодействующими, ядовитыми веществами (СДЯВ) является токсическая доза (Д, гминм3).
Для того чтобы обеспечить безопасную для жизни и здоровья производственную среду, не наносить вред окружающей среде (ст. 50. и ст. 16 Конституции Украины) необходимо осуществлять контроль над загрязнением. С этой целью разработан целый ряд нормативных документов и критериев. Для предупреждения отравлений и профессиональных заболеваний вводится контроль, в основе которого положены величины предельно допустимых концентраций (ПДК).
Под предельно допустимой концентрацией веществ в воздухе рабочей зоны понимаются концентрации, которые при ежедневной работе в течение 8 часов, но не более 40 часов в неделю, в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или отдаленные сроки жизни настоящего и последующих поколений (ГОСТ 12.1.005-88).
По ГОСТу 12.1.007 - 76 (ССБТ), по степени воздействия на организм человека, вредные вещества разделяются на четыре класса опасности. Первый класс - вещества чрезвычайно опасные. ПДК вредных веществ в воздухе рабочей зоны должна быть менее 0,1 мг/м3. Второй класс - вещества высоко опасные, ПДК равна от 0,1 до 1,0 мг/м3. Третий класс - вещества умеренно опасные, ПДК равна 1,1 - 10,0 мг/м3. Четвертый класс - вещества малоопасные, ПДК более 10,0 мг/м3. В каждом классе вещества обладают различной токсичностью, поэтому в ГОСТ 12.1.005-88 определены ПДК для 646 веществ и 57 аэрозолей рабочих зон (703). Кроме того, согласно СНиП Ш-4-80?, приложение 9, приведены величины ПДК для веществ, широко применяемых в строительной практике.
Для гигиенической оценки воздуха необходимо отобрать пробы, определить содержание вредных веществ и сравнить с предельно допустимой концентрацией.
При одновременном содержании в воздухе рабочей зоны нескольких вредных веществ (ГОСТ 12.1.005 - 88) однонаправленного действия допустимыми для проектирования и санитарного надзора считаются такие концентрации /С/ вредных веществ, которые отвечают уравнению: (2.3.1.)т.е. сумма отношений фактических концентраций веществ (С1;С2;…Сn) в воздухе к их предельно допустимым концентрациям (ПДК1, ПДК2,…, ПДК3) не должна превышать единицы.
К веществам однонаправленного воздействия относятся вещества, которые близки по химическому составу и характеру воздействия на организм. Примерами веществ однонаправленного действия являются:
а) различные хлорированные углеводороды (предельные и непредельные);
б) различные бромированные углеводороды (предельные и непредельные);
в) различные спирты;
г) различные щелочи;
д) различные кислоты;
е) различные ароматические углеводороды (толуол, ксилол, бензол);
ж) различные аминосоединения;
з) различные нитросоединения.
При одновременном содержании в воздухе нескольких вредных веществ, которые не проявляют однонаправленного действия ПДК остается таким же, как и при изолированном воздействии каждого вещества. В таблице 2.3.1 проведены концентрации некоторых вредных веществ в воздухе рабочей зоны.
В государственных стандартах приведено более 700 веществ, для которых установлено ПДК. Риском последствий (R) ,обуславливающих возникновение профессиональных заболеваний является присутствие в рабочей зоне токсических веществ, концентрация которых превышает ПДК, т.е. R ПДК Риском последствий при остром отравлении вредными отравляющими веществами и сильнодействующими, ядовитыми веществами (СДЯВ) является токсическая доза (Д, гминм3). При ингаляции токсическая доза равна концентрации вещества в воздухе (Сф; г/м3) на время воздействия (t, мин): Дг = Сфt При воздействии вещества на кожу, через желудочно-кишечный тракт, при попадании в кровь величина токсодозы (мг/кг) определяется количеством отравляющих веществ (к; мг) на килограмм живой массы (m; кг): ДГ = к · m
Для контроля концентрации вредных веществ в воздухе рабочей зоны (рабочих мест) используют экспресс-методы; лабораторные методы; методы непрерывного контроля.
Таблица 2.3.1. ПДК некоторых вредных веществ в воздухе рабочей зоны
№
п/п |
Название вещества | ПДК, мг/м3 | Класс опасности | Агрегатное состояние | Особенности действия | |
1 | 2 | 3 | 4 | 5 | 6 | |
1 | Азота оксиды | 5 | 3 | П | О | |
2 | Алюминий | 2 | 3 | А | Ф | |
3 | Аммиак | 20 | 4 | П | ||
4 | Ангидрид серный | 1 | 2 | А | ||
5 | Ацетон | 200 | 4 | П | ||
6 | Бензин (топливный) | 100 | 4 | П | К | |
7 | Бензин (растворитель) | 300 | 4 | П | ||
8 | Газ | 300 | 4 | П | ||
9 | Дибутилфталат | 0,5 | 2 | п+а | ||
10 | Кислота серная + | 1 | 2 | А | ||
11 | Кислота уксусная + | 5 | 3 | П | ||
12 | Щелочи едкие + | 0,5 | 2 | А | ||
13 | Масла минеральные нефтяные + | 5 | 3 | А | ||
14 | Никель | 0,05 | 1 | А | К, А | |
15 | Озон | 0,1 | 1 | П | О | |
16 | Оксид углерода | 20 | 4 | П | ||
17 | Пыль:
мучная, бумажная, шерстяная, пуховая,
льняная асбестовая, цементная, апатитная |
6
2 2 6 |
4
4 3 4 |
а
а а а |
А, Ф
А, Ф Ф, К Ф |
|
18 | Ртуть металлическая | 0,01/ 0,05 | 1 | П | ||
19 | Свинец | 0,01/ 0,05 | 1 | А | ||
20 | Спирт метиловый | 5 | 3 | П | ||
21 | Спирт этиловый | 1000 | 4 | П | ||
22 | Уайт-спирит | 300 | 4 | П | ||
23 | Фенол | 0,3 | 2 | п | О | |
24 | Хлор + | 1 | 2 | п | ||
Примечание : п - пар; а - аэрозоли; п +а - смесь паров и аэрозолей; О - остронаправленное действие; А - аллергическое действие; Ф - фиброгенное действие; ПДК 0,01/0,05 - максимальная разовая ПДК (числитель), среднемесячная ПДК (знаменатель).
Экспресс-метод нашел наиболее широкое применение и позволяет быстро и с достаточной точностью определять концентрацию вредных веществ, непосредственно, на рабочем месте. Суть его заключается в протягивании определенного объема воздуха через контрольные трубки с индикаторным порошком, который реагирует изменением цвета на содержание вредных веществ в воздухе. К приборам экспресс-метода относятся газоанализаторы: УГ-2; ГХ-100; ГХ-4 и др. (рис. 2.3.1., 2.3.2). Рис. 2.3.1. Химический газоанализатор АМ-5( ГХ-100):
а - разрез по воздухозаборной части; б - общий вид;
1 - дистанционные
цепочки, ограничивающие ход
2 - пружины, удерживающие мех;
3 - резиновый мех;
4- выпускной клапан;
5 - проушина
для отламывания концов
6- мундштук
с резиновой шайбой, являющейся
гнездом для вставки
Лабораторный метод является более точным, но требует отбора проб воздуха в рабочей зоне с последующим анализом его состава в лабораторных условиях в течение ближайшего времени. К таким методам относятся: хроматорафический, фотокалорометрический и др.
Метод непрерывного автоматического контроля применяется на рабочих местах с постоянным воздействием вредных веществ, которые могут вызвать серьезные нарушения в состоянии здоровья людей или привести к авариям за счет возникновения взрывоопасности и пожароопасности. Контроль проводится автоматизированными системами с записью изменений вредностей в воздухе во времени с применением газоанализаторов: Сирена-2 для аммиака, Фотон для сероводорода, ФКГ-3М для хлора и др. Рис.2.3.2. Универсальный газоанализатор УГ-2 а - общий вид; б - схема; 1 -сильфон; 2 - корпус; 3 - шток; 4 - воздухозаборная трубка; 5 - пружина.
Контроль запыленности воздуха в рабочей зоне производится следующими методами: весовой, счетный, фотоэлектрический, ультразвуковой и т.д. В нашей стране наиболее широко применяется весовой аспирационный метод контроля. Суть его заключатся в протягивании определенного объема загрязненного воздуха за определенное время через специальный фильтр. Зная вес фильтра до и после протягивания воздуха и объем протянутого воздуха, вычисляется загрязненность воздуха (рис.3.2.3.).
Массовая концентрация пыли, мг/м3
где: m1 и m2 - масса фильтра до и после отбора пробы пыли, мг; V0 - объем воздуха, протянутогочерез фильтры в 1 мин, приведенный к нормальным условиям, л; - время отбора пыли, мин.
Счетный электрический метод служит для определения числа пылинок, находящихся в 1см3 воздуха. Подсчет производится с помощью микроскопа:
где: Х - искомое число пылинок в 1см3 исследуемого воздуха; N - общее количество пылинок в воздухе; V - вместимость емкости, см3; K - количество клеток в 1см3 окуляра микроскопа; ср - среднее число пылинок, подсчитываемых в пяти различных полях зрения окуляра микроскопа; h - высота емкости, равна 3см.
Фотоэлектрический метод основан на изменении светового потока, проходящего через слой исследуемого воздуха, падающего на фотоэлемент. Изменение в фотоэлементе тока, возбуждаемого световым потоком, фиксируется гальванометром, отградуированном в мг пыли, отнесенных к 1л воздуха. Рис. 2.3.3. Аспиратор для отбора проб воздуха.
При определении концентрации вредных веществ в воздухе результаты должны приводится к нормальным условиям: температура 200С, атмосферное давление 760 мм ртутного столба, относительная влажность 50%.
Для анализа проб воздуха строителям при ведении работ в колодцах, емкостях, отделочных работах очень удобен газоанализатор ГХ-100. Этот компактный прибор прост в конструктивном решении, в применении не требует особых условий его хранения. В приложении 10, СНиП 111-4-80* приведен перечень приборов для определения содержания газов в воздухе строительного производства.
Пары и газы могут быть причинами крупных аварий и взрывов. Основную опасность представляет взрыв горючих газов, скопившихся в изолированном пространстве. Горение в смесях горючих газов или паров с воздухом способно распространяться в определенных соотношениях, называемых концентрационными пределами воспламенения (взрыва).
Минимальную и максимальную концентрацию газов и паров в воздухе, способных воспламеняться, называют нижним и верхним концентрационными пределами воспламенения (взрыва). Физический смысл нижнего концентрационного предела заключается в том, что если в воздухе, при появлении источника воспламенения, концентрация паров и газов достаточна для химического процесса, то происходит его развитие и, как следствие, взрыв при горении. При более низких концентрациях горючих газов не хватает вещества или веществ для поддержания процесса горения и взрыв не происходит. При больших концентрациях больше верхнего концентрационного предела процесс горения (взрыва) не происходит т.к. не хватает кислорода на развитие процесса.
Если на рабочем месте в помещении содержание газов в воздухе ниже нижнего предела, то при участии пыли, повышении температуры или мощности источника этот предел может снижаться. А при больших концентрациях, выше верхнего предела воспламенения, при выходе из замкнутого объема, и обогащении кислородом - способны гореть.
Концентрации, которые находятся между верхним и нижним концентрационными пределами, называются взрывоопасными. Концентрационные пределы воспламенения определяются в лабораторных условиях. ССБТ и ГОСТ 12.1.004 - 91 даны нижние пределы воспламенения газов, паров, веществ и их продуктов. Нижний (верхний) концентрационный предел воспламенения (СНt) газа или пара в воздухе при атмосферном давлении и температуре газо-воздушной системы равен:
где СH - нижний концентрационный предел воспламенения газа или пара в воздухе при атмосферном давлении и температуре 200С.
t - температура пара или газа, К.
Согласно ССБТ и ГОСТ 12.1.010 - 76 производственные процессы должны осуществляться так, чтобы вероятность возникновения взрыва на любом участке работ не превышала 10-6. Поэтому предельно допустимая взрывобезопасная концентрация (ПДВК) при степени надежности невоспламеняемости смеси равной 0,999999 определяется по формуле:
где K3 - коэффициент безопасности к нижнему концентрационному пределу воспламенения.
Значения CH1 приведены для веществ (табл.1), продуктов и смесей (табл.2) в ГОСТ 12.1.004 - 91. Обычно для вычисления нижнего и верхнего пределов воспламенения смеси горючих газов или паров в воздухе применяется формула Ле-Шателье:
где Сн - нижний концентрационный предел воспламенения смеси нескольких горючих компонентов в объемных процентах: С1; С2; Сn; концентрация горючих компонентов в объемных процентах, причем С1+С2+ +Сп=100%; C1н, C2н, Cnн - нижние приделы воспламенения горючих компонентов смеси в объемных процентах.
По этой же формуле вычисляются и верхние концентрационные пределы. В практике широкое распространение получили как объемные, так и весовые проценты. Пересчет мг/л в объемные проценты производится по следующей формуле:
Информация о работе Нормирование вредных веществ в воздухе рабочей зоне