Автор работы: Пользователь скрыл имя, 26 Февраля 2012 в 12:20, курсовая работа
Технологические выбросы при производстве фосфорной кислоты. Предотвращение и контроль выбросов. Неконтролируемые выбросы. Стоки при производстве фосфорной кислоты. Обработка технологических стоков. Программы технологической безопасности.
Фосфорная кислота (ортофосфорная кислота) H3PO4, молярная масса 97,995; бесцветные гигроскопичные монокристаллы, расплывается на воздухе. температура плавления 42,50 С; плотность 1,88 г/см3; наиболее стабильное соединение в ряду кислородсодержащих кислот фосфора. В расплавленном состоянии склонна к переохлаждению; при 15 0C образует густую маслянистую жидкость, при -121 0C- стеклообразную массу.
Фосфорная кислота смешивается с водой в любых соотношениях. Разбавленные водные растворы имеют кисловатый вкус. Из высококонцентрированных растворов кристаллизуется в виде гемигидрата (полугидрата) H3PO4•0,5H2O- бесцветные кристаллы. H3PO4 при нормальных условиях малоактивна и реагирует лишь с карбонатами, гидроксидами и некоторыми металлами. При нагревании выше 80 0C реагирует даже с неактивными оксидами, кремнеземом и силикатами. При повышенных температурах H3PO4 - слабый окислитель для металлов. При действии на металлическую поверхность раствором H3PO4•0,5H2O с добавками Zn или Mn образуется защитная пленка (фосфатирование). Фосфорная кислота при нагревании теряет воду с образованием последовательно пиро- и метафосфорных кислот:
От других фосфорных кислот H3PO4 можно отличить по реакции с AgNO3 - выпадает желтый осадок Ag3PO4. Остальные фосфорные кислоты образуют белые осадки.
Получение.
В промышленности H3PO4 получают термическим и экстракционным способами.
Термический способ (позволяет производить наиболее чистую H3PO4) включает основные стадии: сжигание (окисление) элементного фосфора в избытке воздуха, гидратацию и абсорбцию полученного P4O10, конденсацию фосфорной кислота и улавливание тумана из газовой фазы. Существуют два способа получения P4O10: окисление паров P (в промышленности используют редко) и окисление жидкого P в виде капель или пленки. Степень окисления P в промышленных условиях определяется температурой в зоне окисления, диффузией компонентов и др. факторами. Вторую стадию получения термической H3PO4 - гидратацию P4O10 - осуществляют абсорбцией кислотой (водой) либо взаимодействием паров P4O10 с парами воды. Гидратация (P4O10 + 6H2O 4H3PO4) протекает через стадии образования полифосфорных кислот. Состав и концентрация образующихся продуктов зависят от температуры и парциального давления паров воды.
Все стадии процесса могут быть совмещены в одном аппарате, кроме улавливания тумана, которое всегда производят в отдельном аппарате. В промышленности обычно используют схемы из двух или трех основных аппаратов. В зависимости от принципа охлаждения газов существуют три способа производства термической фосфорной кислоты: испарительный, циркуляционно-испарительный, теплообменно-испарительный. Испарительные системы, основанные на отводе теплоты при испарении воды или разб. H3PO4, наиболее просты в аппаратурном оформлении. Однако из-за относительно большого объема отходящих газов использование таких систем целесообразно лишь в установках небольшой единичной мощности.
Циркуляционно-испарительные
На отечественных предприятиях
эксплуатируют технологические
схемы с циркуляционно-
Технол. схема установки мощностью 60 тыс. т в год 100%-ной H3PO4. Расплавленный желтый фосфор распыляется нагретым воздухом под давлением до 700 кПа через форсунку в башне сжигания, орошаемой циркулирующей кислотой. Нагретая в башне кислота охлаждается оборотной водой в пластинчатых теплообменниках. Продукционная кислота, содержащая 73-75% H3PO4, отводится из контура циркуляции на склад. Дополнительное охлаждение газов из башни сжигания и абсорбцию кислоты производят в башне охлаждения (гидратации), что снижает последующую температурную нагрузку на электрофильтр и способствует эффективной очистке газов. Отвод теплоты в башне гидратации осуществляется циркулирующей 50%-ной H3PO4, охлаждаемой в пластинчатых теплообменниках. Газы из башни гидратации после очистки от тумана H3PO4 в пластинчатом электрофильтре выбрасываются в атмосферу. На 1 т 100%-ной H3PO4 расходуется 320 кг P.
Более экономичный экстракционный метод получения H3PO4 основан на разложении природных фосфатов кислотами (в основном серной, в меньшей степени азотной и незначительно соляной). Фосфорнокислые растворы, полученные разложением азотной кислотой, перерабатывают в комплексные удобрения, разложением соляной кислотой - в преципитат.
Сернокислотное разложение фосфатного сырья.
Суть метода - извлечение (экстрагирование) P4O10 (обычно используют формулу P2O5) в виде H3PO4. По этому методу природные фосфаты обрабатывают H2SO4 с последующим фильтрованием полученной пульпы для отделения H3PO4 от осадка сульфата Ca. Часть выделенного основного фильтрата, а также весь фильтрат, полученный при промывке осадка на фильтре, возвращают в процесс экстрагирования (раствор разбавления) для обеспечения достаточной подвижности пульпы при ее перемешивании и транспортировке. Массовое соотношение между жидкой и твердой фазами от 1,7 :1 до 3,0:1.
С учетом влияния примесей определены требования к фосфатному сырью, согласно которым природные фосфаты с повышенным содержанием соединений Fe, Al, Mg, карбонатов и органических веществ непригодны для производства H3PO4
В зависимости от температуры и концентрации фосфорная кислота в системе CaSO4-H3PO4-H2O сульфат Ca осаждается в виде дигидрата (гипса), гемигидрата или ангидрита. В реальных условиях осадок загрязнен примесями P2O5 в виде неразложенных природных фосфатов, недоотмытой H3PO4, сокристаллизованных фосфатов различных металлов и др., поэтому образующиеся сульфаты Ca называют соответственно фосфогипс, фосфогемигидрат и фосфо-ангидрит. В зависимости от типа осаждаемого сульфата различают три прямых способа произ-ва экстракционной H3PO4: дигидратный, полугидратный (гемигидратный) и ангидритный, а также комбинированные: полугидратно-дигидратный и дигидратно-полугидратный.
В СНГ наиболее отработан в промышленности дигидратный способ, который отличается высоким выходом P2O5 (93-96,5%) в продукционную кислоту; однако относительно низкая концентрация фосфорной кислоты требует ее последующего упаривания. Основные стадии процесса: экстракция с внешней или внутренней циркуляцией и вакуумным или воздушным охлаждением экстракционной пульпы, дозревание пульпы после экстрактора, отделение H3PO4 на наливных вакуум-фильтрах. Эффективность процесса определяют в основном экстрагирование P2O5 и фильтрование пульпы. Аппаратурное оформление должно обеспечить полноту разложения сырья и кристаллизацию сульфата Ca в условиях минимального пересыщения им жидкой фазы. Оптимальная форма и размеры кристаллов сульфата Ca обусловливают хорошую фильтруемость пульпы и эффективную отмывку от фосфорной кислоты минимальным количеством воды (для получения концентрированной продукционной фосфорной кислоты). Типовая схема дигидратного способа (рис. 4) реализуется при непрерывном дозировании в экстрактор фосфатного сырья, 75-93%-ной H2SO4 и оборотной H3PO4. Т-ра процесса 72-75 0C, продолжительность 4-6 ч. Использование 93%-ной H2SO4 (при переработке апатитового концентрата) позволяет увеличить подачу воды для промывки фосфогипса на вакуум-фильтре. Поступающая на фильтр H3PO4 отделяется, осадок фосфогипса промывается на фильтре по противоточной схеме водой с возвратом образующейся слабой фосфорной кислоты в экстрактор. Фосфорную кислоту, полученную из апатитового концентрата (28-32% P2O5), обычно упаривают до содержания P2O5 52-54%. Концентрирование H3PO4, полученной из фосфоритов (20-24% P2O5), неосуществимо без предварительной очистки от примесей и не используется в промышленности.
Гемигидратный процесс позволяет получить более концентрированную H3PO4 (в отдельных случаях до 50% P2O5 без дополнит, упаривания). Фосфорную кислоту, содержащую 36-38% P2O5, можно получить из апатитового концентрата практически на том же оборудовании, что и в типовом дигидратном процессе с воздушным охлаждением пульпы. Фосфориты Каратау по этому методу не перерабатывают. Широкого распространения гемигидратные процессы пока не получили из-за повышенной температуры (80-100 0C), выделения HF в газовую фазу, более низкого выхода P2O5 в кислоту, чем в дигидратном методе. В усовершенствованных промышленных схемах предусмотрено предварительное смачивание апатитового сырья в скоростном смесителе, разделение зон разложения и кристаллизации и др. Проведение процесса при содержании H2SO4 в жидкой фазе пульпы 0,2-1,0% в первом реакторе и 2,0-3,0% во втором позволяет снизить кол-во растворенного сульфата Ca в продукционной H3PO4, значительно уменьшить зарастание оборудования и трубопроводов, существенно интенсифицировать работу основных технологических узлов.
Ангидритный способ имеет ряд преимуществ перед дигидратным и полугидратным: позволяет без упаривания получать кислоту, содержащую до 50% P2O5; при экстракции в газовую фазу выделяется большая часть фтора; получаемая кислота меньше загрязнена сульфатом Ca. Использование метода в промышленности сдерживают: жесткие коррозионные условия (высокие температуры и концентрации H3PO4), образование мелких кристаллов и необходимость большого числа ступеней противоточной промывки.
Комбинированные способы получения экстракционной H3PO4•- гемигидратно-дигидратный и дигидратно-гемигид-ратный - более технологичны и экономичны, чем одностадийные. Обеспечивают повышение степени использования фосфатного сырья (за счет снижения технол. потерь P2O5), увеличение концентрации продукционной H3PO4, получение более чистого сульфата Ca с целью его дальнейшей переработки.
Выбросы в атмосферу
Технологические выбросы при производстве фосфорной кислоты
В число технологических выбросов входят газообразные фториды в форме фтористоводородной кислоты (HF) и четырехфтористый кремний (SiF4), которые выделяются при выщелачивании фосфоритовых руд, обычно содержащих 2–4% фтора.
Выбросы, связанные с термическим процессом производства фосфорной кислоты, обычно содержат фосфат, фторид, пыль, кадмий, свинец, цинк и радионуклиды. Выбросы пыли, содержащие нерастворимые в воде фториды, могут происходить в процессе разгрузки, хранения, перемещения и измельчения фосфоритовых руд, которые транспортируются на участки хранения и измельчения ленточными транспортерами или грузовиками.
К рекомендованным мерам по предотвращению и контролю выбросов относятся следующие:
• правильный выбор фосфоритовых руд (по содержанию, содержанию F, отношению CaO/ и физическим свойствам) с целью сведения к минимуму количества кислоты, необходимой для реализации влажной технологии, уменьшения выбросов в окружающую среду и расширения возможностей повторного использования фосфогипса;
• выбор оптимального размера сит и дробилок (например, валковых или цепных дробилок);
• использование закрытых
ленточных транспортеров и
• обеспечение надлежащего обслуживания (например, регулярная уборка/чистка поверхностей установки и территории);
• улавливание пыли, образующейся при дроблении фосфоритовых руд, с использованием правильно эксплуатируемых и обслуживаемых тканевых и керамических фильтров и/или циклонов;
• обработка газообразных выбросов фторидов с помощью систем очистки газа (например, скрубберов с разбрызгивающим устройством, фильтрующих слоев, установок с перекрестными потоками и циклонных башенных скрубберов). Фтор извлекается в виде кремнефтористоводородной кислоты, из которой фильтрацией удаляется кремнезем. Разбавленный раствор кремнефтористоводородной кислоты (Si) можно использовать в качестве смачивающей жидкости в скруббере. Извлечение открывает Si дополнительные возможности для уменьшения выбросов фторидов.
Неконтролируемые выбросы
Неконтролируемые выбросы связаны главным образом с утечками из трубопроводов, клапанов, соединений, фланцев, уплотнений, разомкнутых линий, уплотнений в резервуарах с плавающей крышкой и насосах, систем транспортировки газа, уплотнений в компрессорах, предохранительных клапанах, резервуарах или открытых емкостях, а также при загрузке и разгрузке продуктов.
К рекомендованным мерам по уменьшению образования неконтролируемых выбросов относятся:
• выбор подходящих клапанов, фланцев и арматуры при проектировании, эксплуатации и обслуживании;
• выполнение программ мониторинга, обслуживания и ремонта, особенно для сальников штоков клапанов и гнезд предохранительных клапанов, с целью уменьшения или исключения аварийных выбросов;
• установка устройств для обнаружения утечек и постоянного мониторинга во всех опасных зонах;
• следует избегать использования
вентиляционных труб без дефлектора
на крышках резервуаров, используя
вместо них перепускные клапаны.
Все хранилища и станции
Информация о работе Мониторинг загрязнения ОС предприятиями по производству фосфорной кислоты