Автор работы: Пользователь скрыл имя, 21 Ноября 2011 в 21:48, реферат
Экосистема (от греческого oikos — жилище, местопребывание и systema — сочетание, объединение), экологическая система, совокупность совместно обитающих организмов и условий их существования, находящихся в закономерной взаимосвязи друг с другом и образующих систему взаимообусловленных биотических и абиотических явлений и процессов.
Введение
Состав экосистемы
2.1 Биотические компоненты
2.2 Абиотические компоненты
Структура экосистемы
3.1 Принципы функционирования экосистем
Разнообразие экосистем
Заключение
Список используемой литературы
Реферат по экологии
На тему:
Экосистема:
состав, структура и разнообразие
Выполнила:
Проверил:
Москва,
2011 г
Оглавление
2.1 Биотические компоненты
2.2 Абиотические компоненты
3.1 Принципы функционирования экосистем
Экосистема (от греческого oikos — жилище, местопребывание и systema — сочетание, объединение), экологическая система, совокупность совместно обитающих организмов и условий их существования, находящихся в закономерной взаимосвязи друг с другом и образующих систему взаимообусловленных биотических и абиотических явлений и процессов. Термин «Экосистема» предложен А. Тенсли (1935), который считал, что экосистемы, «с точки зрения эколога, представляют собой основные природные единицы на поверхности земли», в которые входит «не только комплекс организмов, но и весь комплекс физических факторов, образующих то, что мы называем средой биома, — факторы местообитания в самом широком смысле». Он подчёркивал, что для экосистемы характерен «разного рода обмен веществ не только между организмами, но и между органическим и неорганическим».
Понятие «Экосистема» подходит к объектам разной сложности и размеров. Можно выделить экосистему пруда или озера в целом и в то же время различать экосистемы прибрежных зарослей водных растений или донной области. Массив леса — экосистема, в пределах которой находятся экосистемы почв разного типа, экосистема гниющего пня и т. д. Чаще под экосистемой понимают совокупность организмов и неживых компонентов среды их обитания, при взаимодействии которых происходит более или менее полный биотический круговорот (с участием продуцентов, консументов и редуцентов). Термин «Экосистема» подходит и к искусственным экосистемам (сельскохозяйственные угодья, сады, парки, сооружения биологической очистки сточных вод и пр.). Экосистемы могут быть высокоустойчивыми, сохраняющими свои характерные особенности на протяжении длительного времени, или кратковременными (например, экосистемы эфемерных водоёмов). Независимо от степени сложности экосистема характеризуется видовым составом, численностью входящих в неё организмов, биомассой, соотношением отдельных трофических групп, интенсивностью процессов продуцирования и деструкции органического вещества. Пространственная разграниченность экосистемы может быть выражена более или менее отчётливо, а в отношении протекающих в них процессов круговорота они могут быть в большей или меньшей степени автономными. Существование экосистемы возможно лишь при притоке из окружающей среды не только энергии, но и большего или меньшего количества вещества. Все реальные экосистемы (в совокупности слагающие биосферу Земли) принадлежат к открытым системам.
С
середины 20 века (в значительной степени
в связи с остротой вставших перед
человечеством экологических проблем)
широко развернулись исследования по
количественной оценке функциональных
особенностей экосистем. Для понимания
структуры, продуктивности и устойчивости
экосистемы важно изучение трофических
связей, через которые в экосистеме осуществляются
процессы биологической трансформации
вещества и энергии. Количественное определение
интенсивности и эффективности этих процессов
современными методами, в частности с
помощью математического моделирования
экосистемы, — необходимая основа решения
актуальных вопросов рационального использования
биологических ресурсов природы и сохранения
среды обитания человека. Термин биогеоценоз
часто употребляется в том смысле, который
придаётся термину «Экосистема». Экосистема
— широкое понятие, экосистема не связана
с ограниченным участком земной поверхности.
Это понятие применимо ко всем стабильным
системам живых и неживых компонентов,
где происходит внешний и внутренний круговорот
веществ и энергии. Экосистема может включать
и несколько биогеоценозов (например,
биогеоценозы округа, провинции, зоны,
почвенно-климатической области, пояса,
материка, океана и биосферы в целом). Таким
образом, не каждую экосистему можно считать
биогеоценозом, тогда как всякий биогеоценоз
является экологической системой.
В экосистеме можно выделить два компонента — биотический и абиотический.
Давайте рассмотрим более подробно каждый из них.
2.1 Биотический компонент экосистем
Организмы в экосистеме связаны общностью энергии и питательных веществ. Всю экосистему можно уподобить единому механизму, потребляющему энергию и питательные вещества для совершения работы. Питательные вещества первоначально происходят из абиотического компонента системы, в который, в конце концов, и возвращаются либо в качестве отходов жизнедеятельности, либо после гибели и разрушения организмов. Таким образом, в экосистеме происходит круговорот питательных веществ, в котором участвуют и живой и неживой компоненты. Такие круговороты называются биогеохимическими циклами.
Движущей
силой этих круговоротов служит, в
конечном счете, энергия Солнца. Фотосинтезирующие
организмы непосредственно
Энергия может существовать в виде различных взаимопревращаемых форм, таких, как механическая, химическая, тепловая и электрическая энергия. Переход одной формы в другую называется преобразованием энергии.
Таким образом, все живые организмы – это преобразователи энергии, и каждый раз, когда происходит превращение энергии, часть ее теряется в виде тепла. В конце концов, вся энергия, поступающая в биотический компонент экосистемы, рассеивается в виде тепла. Изучение потока энергии через экосистемы называется энергетикой экосистемы.
Фактически живые организмы не используют тепло, как источник энергии для совершения работы – они используют свет и химическую энергию.
Изучение потока энергии через экосистемы называется энергетикой экосистем.
Пищевые цепи и трофические уровни
Внутри экосистемы содержащие энергию органические вещества создаются автотрофными организмами и служат пищей (источником вещества и энергии) для гетеротрофов. Типичный пример животное поедает растения. Это животное в свою очередь может быть съедено другим животным, и таким путем может происходить перенос энергии через ряд организмов – каждый последующий питается предыдущим, поставляющим, поставляющим ему сырье и энергию. Такая последовательность называется пищевой цепью, а каждое ее звено – трофическим уровнем. Первый трофический уровень занимают автотрофы, или так называемые первичные продуценты. Организмы второго трофического уровня называются первичными консументами, третьего – вторичными консументами и т. д. Обычно бывает четыре или пять трофических уровней и редко больше шести.
2.2 Абиотический компонент экосистемы
Абиотический, т.е. неживой, компонент экосистемы подразделяется на эдафические (почвенные), климатические, топографические и другие физические факторы, в том числе воздействие волн, морских течений и огня.
Важнейшими
составляющими абиотического
К климатическим факторам относят свет, температуру, влажность и т. п. На интенсивность света влияет широта местности, время дня и года, а также наклон поверхности по отношению к горизонтали. Под действием света в растениях происходят фотосинтез и транспирация, благодаря свету животные видят. Организмы, живущие в областях с выраженной сменой времён года, выработали различные реакции на периодические изменения освещённости (у растений – цветение, опадание листьев, у животных – миграция, зимняя спячка).
К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография). Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.
Главным
топографическим фактором является
высота над уровнем моря. С высотой
снижаются средние температуры, увеличивается
суточный перепад температур, возрастают
количество осадков, скорость ветра и
интенсивность радиации, понижаются атмосферное
давление и концентрации газов. Все эти
факторы влияют на растения и животных,
обуславливая вертикальную зональность.
3. Структура экосистемы
С точки зрения структуры в экосистеме выделяют:
Последние три компонента формируют биомассу экосистемы.
Сообщества
организмов связаны с неорганической
средой теснейшими материально-энергетическим
связями. Растения могут существовать
только за счёт постоянного поступления
в них углекислого газа, воды,
кислорода, минеральных солей, Гетеротрофы
живут за счёт автотрофов, но нуждаются
в поступлении таких
Для
поддержания круговорота
Продуцентами
выступают автотрофные
Консументы - это гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов н, трансформирующие его в новые формы.
Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительна, так как и консументы, и сами продуценты выступают частично в роли редуцентов, в течение жизни выделяя в окружающую среду минеральные продукты обмена веществ.
В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена - консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например в тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, и их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.
Для естественной экосистемы характерны три признака:
- экосистема
обязательно представляет
- в рамках
экосистемы осуществляется
- экосистема
сохраняет устойчивость в
Примерами природных экосистем являются озеро, лес, пустыня, тундра, суша, океан, биосфера. Масштабы экосистем различны: микросистемы (например, болотная кочка, дерево, покрытый мхом камень или пень, горшок с цветком и т.п.), мезоэкосистемы (озеро, болото, песчаная дюна, лес, луг и т.п.), макроэкосистемы (континент, океан и т.п.).
Как видно из примеров, более простые экосистемы входят в более сложно организованные. При этом реализуется иерархия организации систем, в данном случае экологических. Важным следствием иерархической организации экосистем является то, что по мере объединения компонентов в более крупные блоки, которые, в свою очередь, объединяются в системы, у этих новых функциональных единиц возникают новые свойства, отсутствовавшие на предыдущем уровне. Такое наличие у системного целого особых свойств, не присущих его подсистемам и блокам, а также сумме элементов, не объединенных системообразующими связями, называют эмерджентностью. Эмерджентные свойства экологической системы представляют собой не простой переход количества в качество, а являются особой формой интеграции, подчиняющейся иным законам формообразования, функционирования и эволюции. Такие качественно новые, эмерджентные свойства экологического уровня или экологической единицы нельзя предсказать, исходя из свойств компонентов, составляющих этот уровень или единицу. Хотя данные, полученные при изучении какого-либо уровня, помогают при изучении следующего, с их помощью никогда нельзя полностью объяснить явления, происходящие на этом уровне: он должен быть изучен непосредственно. Например, молекула обладает иными свойствами, чем составляющие ее атомы, в то время как скопление атомов, не объединенных в молекулы, не даст представления о качестве молекулы, а механическое сосредоточение всех необходимых для построения организма молекул, даже отдельных органов, не дает качества организма. Принцип эмерджентности имеет важное значение для экологического мышления: одно дерево не может составить леса, разрозненные деревья - тоже; лес возникает лишь при определенных условиях - достаточной густоте древостоя, соответствующей флоре и фауне, сформированных сообществах взаимосвязанных организмов, живущих на данной территории, и при других условиях, то есть эмерджентные свойства возникают в результате изменения природы этих компонентов, а не в результате изменения их количества. Части не склеиваются, а интегрируются, обуславливая появление новых, до этого отсутствовавших свойств.
Информация о работе Экосистема: состав, структура и разнообразие