Автор работы: Ирина Попова, 21 Ноября 2010 в 21:49, курсовая работа
Велика геологическая деятельность подземных вод. С ними связаны карстовые процессы в растворимых горных породах, оползание земляных масс по склонам оврагов, рек и морей, разрушение месторождений полезных ископаемых и образование их в новых местах, вынос различных соединений и тепла из глубоких зон земной коры.
Подземные воды, их происхождение, распространение, миграция, качественные и количественные изменения во времени и геологическая деятельность являются предметом изучения особой науки — гидрогеологии, одной из ветвей геологии.
ВВЕДЕНИЕ 2
1. ВОДОПРОНИЦАЕМОСТЬ ГОРНЫХ ПОРОД 3
2. ВИДЫ ВОДЫ В ГОРНЫХ ПОРОДАХ 5
3. ПРОИСХОЖДЕНИЕ ПОДЗЕ/Щ-ШХ ВОД 7
4. КЛАССИФИКАЦИЯ ПОДЗЕМНЫХ ВОД 10
6. ХИМИЧЕСКИЙ СОСТАВ ПОДЗЕМНЫХ ВОД 20
7. МИНЕРАЛЬНЫЕ ВОДЫ 23
8. ОПОЛЗНИ 25
ЛИТЕРАТУРА 35
ГЕОЛОГИЧЕСКАЯ
ДЕЯТЕЛЬНОСТЬ ПОДЗЕМНЫХ
ВОД
План:
К подземным подам относятся все воды, находящиеся в порах и трещинах горных пород. Они широко распространены в земной коре, и изучение их имеет большое значение при решении вопросов: водоснабжения населенных пунктов и промышленных предприятий, гидротехнического, промышленного и гражданского строительства, проведения мелиоративных мероприятий, курортно-санаторного дела и т. д.
Велика геологическая деятельность подземных вод. С ними связаны карстовые процессы в растворимых горных породах, оползание земляных масс по склонам оврагов, рек и морей, разрушение месторождений полезных ископаемых и образование их в новых местах, вынос различных соединений и тепла из глубоких зон земной коры.
Подземные воды, их происхождение, распространение, миграция, качественные и количественные изменения во времени и геологическая деятельность являются предметом изучения особой науки — гидрогеологии, одной из ветвей геологии.
В формировании подземных вод большое значение имеет водопроницаемость горных пород, т. е. способность горной породы пропускать воду. Наблюдения показывают, что в одних местах, где развиты глины, атмосферные осадки застаиваются на поверхности и испаряются, в других районах, сложенных песками, достаточно быстро проникают в глубину. Еще быстрей просачиваются осадки в галечниках.
По степени проницаемости горные породы подразделяются на 3 группы:
1) водопроницаемые, к которым относятся пески, гравий, галечники, трещиноватые песчаники, конгломераты и другие скальные породы, трещиноватые и захарстованные известняки, доломиты и другие растворимые породы;
2) слабопроницаемые — супеси, легкие суглинки, лёсс, неразложившийся торф и др.;
3) относительно водонепроницаемые, или водоупорные, — глины, тяжелые суглинки, хорошо разложившийся торф и нетрещиноватые массивные кристаллические и сцементированные осадочные горные породы.
Водопроницаемость горных пород обусловлена либо тем, что порода рыхлая и зернистая (например, песок, гравий), и вода в этом случае может просачиваться по промежуткам (порам) между отдельными зернами, либо тем, что породы хотя и массивные и сцементированные (гранит, известняк), но разбиты трещинами, по которым и происходит перемещение воды. V
Под
пористостью понимают отношение
объема пор в данном образце породы
ко всему объему породы:
, или в процентах
, где n — пористость пород; Vn — объем
пор в образце породы: V — объем всего образца.
Следует отметить, что не всегда значительная
пористость обеспечивает свободное проникновение
воды. Так, например, глины обладают значительной
пористостью, достигающей 50 — 60%, но в то
же время практически являются водонепроницаемыми.
Это объясняется тем, что поры в глинах
чрезвычайно тонки (суб-капнлляры), и вода
при движении в них испытывает огромное
сопротивление, создаваемое поверхностным
натяжением. Обычные же пески, имеющие
в среднем пористость 30—35%, хорошо проницаемы
для воды. Чем крупнее зерна, слагающие
рыхлую обломочную породу, тем большей
водопроницаемостью она обладает. Галечники
с крупным песком обладают в среднем пористостью
около 20% и характеризуются наибольшей
водопроницаемостью. Следовательно, водопроницаемость
рыхлых обломочных горных пород зависит
не от количества пор, а от размера и формы
слагающих породу зерен и от плотности
сложения их.
Рис. 1. Характер водопроницаемых пород:
А—пористые
породы; Б— трещиноватые породы; В — размеры
водопроводящиx трещин; Г — размеры и плотность
расположения зерен в пористых городах:
1— водонепронищаемые породы; 2 — породы,
насыщенные подом
Примеры различной пористости породы в зависимости от плотности сложения зерен и размеров трещин видны на рис. 1. От состава рыхлых горных пород зависит их влагосмкость, т. е. способность вмещать и удерживать в себе то или иное количество воды. Различают полную влагоемкость, когда вода заполняет все поры (включая и тонкие капиллярные) горной породы, и макси-мальную молекулярную влагоемкость, показывающую количество воды, удерживаемой в породе силами молекулярного сцепления после того, когда вся гравитационная вода стечет из породы. Разность между полной и максимальной молекулярной влагоемкостыо называют водоотдачей горной породы. Для практических целей важно знать удельную водоотдачу — количество свободной воды, которое можно получить из 1 куб. м породы. Наибольшая водоотдача у крупнозернистых рыхлых пород (пески, гравий). Влагоемкие глины воду практически не отдают.
Водопроницаемость трещиноватых пород зависит от размера и характера трещин.
Если
подземные воды движутся по порам
в рыхлых породах, они называются
поровыми, по трещинам — трещинными.
Если же помимо трещин, в горных породах
развиты карстовые пещеры и другие подземные
каналы, то подземные воды, циркулирующие
в них, называют трещинно-карстовыми, или
просто карстовыми.
В современной литературе приводятся различные классификации видов воды в горных породах. В СССР широко известна классификация, предложенная А. Ф. Лебедевым, который на основании тщательных экспериментальных и полевых исследований установил следующие виды воды в горных породах (рис. 2).
1. Вода в виде пара (парообразная) содержится в воздухе, занимающем свободные от жидкой воды поры и трещины в горных породах. Она находится в динамическом равновесии с другими видами воды и с парами воды в атмосфере. При определенных условиях парообразная вода конденсируется.
2. Гигроскопическая вода образуется в том случае, когда молекулы парообразной воды адсорбируются (лат. adsorbtio — поглощение) на поверхности минеральных частиц горных пород. Гигроскопическая вода облекает частицы породы одномолекулярной тонкой пленкой и прочно удерживается на их поверхности молекулярными и электрическими силами и может быть удалена при нагревании до температур не менее 105—110°.
3. Пленочная вода образует вокруг частиц горной породы и поверх гигроскопической воды более толстую пленку в несколько слоев молекул. Пленочная вода может передвигаться от одной частицы к другой. Если толщина пленок у соседних частиц различная, то происходит медленное перемещение воды от частиц с большей толщиной пленки к частицам с меньшей пленкой до тех пор, пока пленки не станут одинаковыми по толщине.
Как и гигроскопическая, пленочная вода содержится в большом количестве в глинистых породах и в меньшем — в песчаных.
4. Капиллярная вода заполняет частично или полностью тонкие поры и трещины в горных породах и удерживается в них силами поверхностного натяжения. Эта вода поднимается по тонким капиллярам снизу вверх от уровня подземных вод. Чем меньше диаметр частиц, слагающих горную породу, тем мельче диаметр пор и тем больше высота капиллярного поднятия. В суглинках высота капиллярного поднятия может достигать 2 м и более, в крупнозернистых песках — всего нескольких сантиметров.
5. Капельножидкая (свободная) гравитационная -до да, способная свободно передвигаться по порам, трещинам и другим пустотам в горных породах под влиянием силы тяжести. Она может быть подразделена на воду, полностью заполняющую поры и трещины в горных породах, образующую горизонт подземных вод, и воду, просачивающуюся сверху вниз в зоне аэрации (фр. aeration — воздух), т. е. в зоне, расположенной выше подземных вод, где в горных породах находится воздух. На рис. 2 видно, что при увеличении влажности пород и толщины пленки на поверхности минеральных частиц горных пород силы энергетической связи их уменьшаются и в конце концов наступает момент, когда эти силы не в состоянии удерживать пленочную воду и часть ее будет переходить в капельножидкую и просачиваться сверху вниз.
6. Вода в твердом состоянии в виде льда, присутствует в горных породах, имеющих отрицательную температуру (ниже 0°). Лед может быть в виде отдельных микрокристаллов, тонких пленок или в виде прослоев чистого льда. Особенно большое распространение лед имеет на обширных пространствах северной части Сибири и Аляски, в областях развития многолетнемерзлых горных пород, или «вечной мерзлоты». Вода в твердом виде возникает также ежегодно в других зонах в слое сезонного промерзания.
7.
Кристаллизационная вода входит в состав
ряда минералов и принимает участие в
строении их кристаллических решеток.
Примером тому является вода гипса CaSO4-2H2O.
Она может быть удалена при нагревании.
Рис. 2. Различные формы связи молекул воды с частицами породы (по А. Ф. Лебедеву):
1 — частицы почвы; 2—молекулы воды; а — гигроскопическая вода при неполном насыщении; б—то же, при полном насыщении; в и г — пленочная вода: частица г при полном молекулярном насыщении с пленкой максимально возможной толщины; пленочная вода движется налево до выравнивания толщины пленки у обеих частиц; д — гравитационная вода, образующая каплю, которая стекает вниз под влиянием силы тяжести
За последние годы в связи с накоплением новых данных экспериментальных и полевых исследований классификация А. Ф. Лебедева получила дальнейшее развитие в трудах многих ученых Советского Союза (Роде, 1952; Сергеев, 1971; Ломтадзе, 1970 и др.). Исходя из запросов инженерной геологии и грунтоведения, многие авторы детализируют представления о гигроскопической и пленочной воде в классификации А. Ф. Лебедева. Эти виды воды называют физически связанной водой. По характеру связи с минеральными частицами и по особенностям свойств связанная вода подразделяется на прочносвязанную воду (адсорбированную, гигроскопическую), удерживаемую па поверхности частиц породы силами, соответствующим и сотням и тысячам атмосфер, и рыхлосвязанную воду, слои которой более удалены от частиц горной породы. Рыхлосвязанная вода удерживается в породах значительно меньшими силами и, но своим свойствам существенно отличаясь от прочносвязанной, близка к свободной воде.
В зависимости от происхождения выделяются подземные воды нескольких типов: 1) инфильтрационные, 2) конденсационные, 3) седиментогенные, 4) «ювенильные» (или магмогенные).
Инфильтрационные подземные воды образуются в результате просачивания (инфильтрации) в глубину атмосферных осадков, выпадающих па земную поверхность. Как известно, на земном шаре происходит непрерывный влагооборот, в котором принимают участие атмосферные, поверхностные и подземные воды. Вода океанов, морен, рек под влиянием солнечного тепла испаряется и насыщает парами воздух. Воздушные массы, непрерывно перемещаясь, переносят пары в пределы суши, где они при благоприятных условиях сгущаются и выпадают па поверхность Земли в виде атмосферных осадков. Здесь они расходятся по трем путям: одна часть стекает по склонам в ручьи и реки, которые несут свои воды в моря и океаны; вторая испаряется с поверхности Земли и третья просачивается в глубину, где и происходит накопление подземных вод. Последние в свою очередь движутся по направлению к рекам и морям. Одним из доказательств именно такого происхождения подземных вод (инфильтрации) может служить качественное и количественное изменение воды в колодцах во время дождливой погоды. Есть основание полагать, что инфильтрация — основной источник пополнения запасов подземных вод.
Конденсационные подземные воды. В некоторых климатических зонах, например в пустынях, наблюдаются явления, которые трудно объяснить инфильтрационной теорией происхождения подземных вод. При малом количестве атмосферных осадков с крайне неравномерным их распределением во времени (по нескольку месяцев совсем не бывает дождя) и при огромном испаряемости в пустынях пег условий для пополнения подземных вод путем инфильтрации. Между тем на некоторой глубине от поверхности повсеместно в.пустынях обнаруживается слой влажных пород пли скопление подземной воды.
В 1877 г. немецкий гидролог О. Фольгер выступил с конденсационной теорией происхождения подземных вод. По его представлениям, теплый воздух, содержащий водяные пары, проникая в более холодные горные породы, отдает им часть влаги путем конденсации. Автор считал свою теорию универсальной и отрицал возможность накопления подземных вод в результате инфильтрации атмосферных осадков — «ни одна капля воды не происходит за счет капель дождевой воды».
Выдвинутая Фольгером теория не была подтверждена экспериментальными данными и совершенно не вязалась с представлениями о скорости воздухообмена между атмосферой и верхними необводненными слоями литосферы, что вызвало резкие возражения против нее.
Конденсационная теория происхождения подземных вод была возрождена на совершенно новой основе русским исследователем агрономом А. Ф. Лебедевым, который выполнил блестящие эксперименты, связанные с вопросом о влажности пород и перемещения влаги в различных состояниях.
Информация о работе Геологическая деятельность подземных вод