Автор работы: Пользователь скрыл имя, 25 Марта 2012 в 12:21, реферат
Сигналом называется материальный носитель информации, представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной. Такой параметр называют информативным.
Измерительный сигнал — это сигнал, содержащий количественную информацию об измеряемой физической величине.
Рисунок 6 - Амплитудно-модулированный (1) и модулирующий (2) сигналы
Амплитудно-модулированные сигналы описываются формулой
где m — глубина амплитудной модуляции (всегда меньше единицы). При частотной модуляции (рис.7) измерительная информация содержится в частоте модулированного сигнала, т.е.
где Dw — наибольшее изменение частоты модулированного сигнала, т.е. девиация частоты, пропорциональная амплитуде модулирующего сигнала.
При фазовой модуляции (рис. 8) модулирующий сигнал X(t) воздействует на фазу несущего колебания:
где mф — коэффициент фазовой модуляции.
Рисунок 7 - Частотно-модулированный (1) и модулирующий (2) сигналы
Рисунок 8 - Модулирующий (1), фазомодулированный (2) и опорный (3) сигналы
Если модулируемым сигналом является
периодическая
• амплитудно-импульсная (АИМ);
• частотно-импульсная (ЧИМ);
• широтно-импульсная (ШИМ).
Рисунок 9 - Несущая последовательность прямоугольных импульсов (а), модулирующий (б), амплитудно-модулированный (в), частотно-модулированный (г) и широтно-модулированный (д) сигналы
При этом параметром, несущим измерительную информацию, соответственно являются амплитуда, частота и длительность импульсов.
Квантование — измерительное преобразование непрерывно изменяющейся величины в ступенчато изменяющуюся с заданным размером ступени q — квантом. В результате проведения этой операции непрерывное множество значений сигнала Y(t) в диапазоне от Ymin до Ymax преобразуется в дискретное множество значений YKB(t) (см. рис.10). Квантование широко применяется в измерительной технике. Существует большая группа естественно квантованных физических величин. К ним относятся электрический заряд, квантом которого является заряд электрона, масса тела, квантом которой является масса молекулы или атома, составляющих данное тело, и др.
Рисунок 10 - Исходный непрерывный (1) и непрерывный по
времени и квантованный по размеру (2) сигналы
Различают равномерное (q — постоянная величина) и неравномерное (q — переменная величина) квантование. Неравномерное квантование применяется достаточно редко, в специфических случаях, например при большом динамическом диапазоне квантуемой величины. В связи с этим в дальнейшем рассматривается только равномерное квантование.
Процесс квантования описывается уравнением
где Yкв(t) — квантованный сигнал; N(ti) — число квантов; l(t - ti) — единичная функция.
Любой процесс измерения по сути своей есть процесс квантования. Например, при измерении длины тела линейкой с миллиметровыми делениями определяется целое число миллиметров, наиболее близкое к истинному размеру тела. В данном случае в роли кванта выступает миллиметр. При использовании микрометра квантом является величина, равная 10-6 м.
Разность между истинным значением длины тела и измеренным линейкой есть погрешность квантования. Погрешность квантования D — методическая погрешность отражения непрерывной величины ограниченным по числу разрядов числом. Она равна разности между значением непрерывной функции и значением, полученным в результате квантования (см. рис. 10).
Cигналы, дискретизированные по времени и непрерывные по размеру получаются из непрерывных по времени и размеру сигналов посредством дискретизации. Дискретизация — измерительное преобразование непрерывного во времени сигнала Y(t) в последовательность мгновенных значений этого сигнала Yk=Y(kDt), соответствующих моментам времени kDt, где k =1; 2; ... Интервал времени Dt называется шагом дискретизации, а обратная ему величина f =l/Dt — частотой дискретизации.
Процесс дискретизации непрерывного сигнала показан на рис. 11. Математически он описывается с помощью дельта-функции 5(t-kAt), которая, как известно, обладает стробирующим действием. Идеальный дискретизированный сигнал Yfl является последовательностью импульсов нулевой длительности и аналитически может быть представлен в виде
где Y(kDt) — значение непрерывного сигнала в k-й точке дискретизации.
Рисунок 11 - Дискретизация непрерывного сигнала (а) и погрешность
восстановления (б):
1 — исходный непрерывный сигнал; 2 — сигнал, дискретизированный-по времени и непрерывный по размеру; 3 — восстановленный с помощью полинома Лагрзнжа нулевой степени непрерывный во времени сигнал
Дискретизация бывает равномерной (At = const) и неравномерной (At — переменная величина). На практике наибольшее распространение получила равномерная дискретизация.
По способу получения
При физической дискретизации, т.е. дискретизации, осуществляемой аппаратными средствами электроники (рис. 12, а), преобразование непрерывного сигнала в последовательность мгновенных значений осуществляется с помощью стробирующего импульса конечной (ненулевой) длительности тс (рис. 12, б). Поэтому амплитуда дискретизированных значений может находиться в диапазоне от YBbIX(ti) до YBbIX(ti - tc). Поскольку дискретизированное значение относят, как правило, к моменту времени ti, то возникает погрешность датирования отсчета Dд =YBbIX(ti) — Ycp, максимальное значение которой Dдm = Yвых(ti + tc) - Yвых(ti), где Ycp — некоторое значение сигнала Ycp Î [Yвыx(ti);Yвых(ti+tc)], зависящее от аппаратной реализации устройств, дискретизирующих измерительный сигнал.
Рисунок 12 - Структурная схема процесса физической дискретизации (а)
и основные
сигналы в укрупненном
Дискретизация имеет место в расчетах процессов, проводимых с помощью вычислительной техники. В этом случае она называется аналитической (математической, расчетной, условной). При такой дискретизации длительность стробирующего импульса равна нулю; следовательно, погрешность датирования принципиально отсутствует и дискретизированное значение относится к заданному моменту времени, т.е. определяется мгновенное значение сигнала.
В дискретизированном сигнале отсутствуют промежуточные значения, которые содержались в исходном непрерывном сигнале. Однако часто принципиально необходим непрерывный сигнал. Поэтому во многих случаях дискретизированный сигнал требуется преобразовать в непрерывный, т.е. восстановить его промежуточные значения. Задача восстановления дискретизированных сигналов в общем случае аналогична задаче интерполирования функций. При восстановлении исходного сигнала Y(t) по совокупности выборок Yд(kDt) формируется обобщенный многочлен
где Ci(t) — система базисных функций, которая обычно является ортогональной или ортонормированной; ai — коэффициенты ряда. Его значения в точках дискретизации совпадают со значениями непрерывной функции. В ряде случаев при формировании восстанавливающего многочлена накладывается условие совпадения производных до заданного порядка п включительно.
При восстановлении непрерывный сигнал на каждом из участков между соседними дискретными значениями заменяется кривой, вид которой определяется выбранными базисными функциями. Восстановление непрерывного сигнала из дискретизированного должно проводиться с возможно меньшей заданной погрешностью. Для этого необходимо соответствующим образом выбрать для данного участка сигнала восстанавливающую базисную функцию.
Коэффициенты ряда и базисные функции могут выбираться на основе различных критериев, например: наибольшего отклонения, минимума погрешности или совпадения значений восстанавливаемого непрерывного сигнала с мгновенными значениями дискретизированного сигнала. В "измерительной технике наиболее широко используется последний критерий, так как он удобен для аналитического восстановления с помощью компьютера на основе результатов измерения мгновенных значений дискретизированного сигнала, отличается простотой реализации и достаточно высокой точностью.
Восстановление сигнала в
Если теорема Котельникова выполняется, то непрерывный сигнал Y(t) может быть восстановлен как сумма базисных функций, называемых рядом Котельникова:
где wc=2pfc — круговая граничная частота спектра непрерывного сигнала Y(t); Dt — период дискретизации; Fот(t) — функция отсчетов.
Ряд Котельникова является одним из примеров обобщенного ряда Фурье и замечателен тем, что его коэффициенты равны мгновенным дискретизированным значениям сигнала Y(t) и, следовательно, определяются наиболее простым способом.