Автор работы: Пользователь скрыл имя, 25 Ноября 2011 в 22:00, реферат
В роботі описані види полімерних матеріалів які використовуються в будівництві
Вступ
1 Історичнийрозвитокхіміїполімерів
2 Загальна характеристика та класифікація
3 Фізичнівластивості
4 Структура полімерів
4.1 Хімічнабудова
4.2 Молекулярнамаса
5 Застосування
6 Сировинна база виробництваполімерів
7 Полімерні матеріали, пластмаси та вироби зних
8 Технологія полімерних і композиційних матеріалів
Література
Вступ
Література
Полімер
Полімер (рос.полимеры, англ.polymers, нім.Polymere n pl, Polymerisate n pl) — природні та штучні сполуки, молекули яких складаються з великого числа повторюваних однакових або різних за будовою атомних груповань, з'єднаних між собою хімічними або координаційними зв'язками в довгі лінійні або розгалужені ланцюги. Структурні одиниці, з яких складаються полімери називаються мономерами.
Детальніше: Історичний розвиток хімії полімерів
Термін «полімерія» був уведений в науку І. В. Галустяном в 1833 р. для позначення особливого виду ізомерії, при якій речовини однакового складу, відрізняються молекулярною масою. Наприклад, етилен і бутилен, кисень і озон. Синтетичні полімери на той час ще не були відомі, а перші згадки про них відносяться до 1838 (полівініліденхлорід) і 1839 (полістирол). Тому такий зміст терміну не відповідає сучасним уявленням.
Деякі полімери вірогідно одержували ще в першій половині ХІХ ст. Це були побічні та небажані на той час продукти «осмолення» основної хімічної реакції. Реакціїполімеризації та поліконденсації, які вели до утворення таких продуктів на той час намагалися подавити. Тому для полімерів ще іноді використовують термін «смола».
Хімія полімерів, як наука, виникла лише після створення в 60-х роках ХІХ ст. російським хіміком О. М. Бутлеровим (1828—1886) теорії хімічної будови органічних речовин, що дало можливість систематизувати величезний практичний матеріал, накопичений на той час органічною хімією.
РеакціяКучерова заклала основу промислового синтезу складних і простих вінілових ефірів, які використовуються для утворення ряду полімерів (наприклад, полівінілацетата). Вуглеводні ацетиленового ряду також дуже легко полімерізуються з утворенням циклічних вуглеводнів ряду бензола.
Розмір молекули полімеру визначається ступенем полімеризаціїn, тобто числом ланок у ланцюзі. Якщо n = 10…20, речовина відноситься до легких масел. Зі зростанням n збільшується в'язкість, речовина стає воскоподібною, нарешті, при n = 1000 утворюється твердий полімер. Ступінь полімеризації необмежений: він може бути 104, і тоді довжина молекул досягає мікрометрів. Молекулярна маса полімеру дорівнює добутку молекулярної маси мономера та ступеня полімеризації. Зазвичай молекулярна маса перебуває в межах 103 … 3*105. Більша довжина молекул перешкоджає їхньому правильному впакуванню, і структура полімерів варіює від аморфної до частково кристалічної. Частка кристалічності значною мірою визначається геометрією ланцюгів. Чим ближче укладаються ланцюги, тим більш кристалічним полімер стає. Кристалічність, зазвичай, навіть у найкращому разі виявляється недосконала.
Аморфні полімери плавляться в діапазоні температур, яка залежить не тільки від їхньої природи, але й від довжини ланцюгів; кристалічні мають точку плавлення.
В основу класифікації
полімерів закладені різні
Природні полімери утворюються в результаті життєдіяльності рослин і тварин й утримуються в деревині, вовні, шкірі. До природних полімерів відносять протеїн, целюлоза, крохмаль, шелак, лігнін, латекс.
Зазвичай природні
полімери піддаються операціям виділення
очищення, модифікації, при яких структура
основних ланцюгів залишається незмінної.
Продуктом такої переробки є
штучні полімери. Прикладами є натуральний
каучук, виготовлений з латексу, целулоїд,
що представляє собою
Природні та штучні полімери відіграють велику роль у сучасній техніці. Різке зростання виробництва та споживання органічних матеріалів відбулося за рахунок синтетичних полімерів — матеріалів, отриманих синтезом з низькомолекулярних речовин не природній аналогів. Без полімерів уже не може обійтися жодна галузь техніки, тим більше нової. За хімічною структурою полімери поділяються на лінійні, розгалужені, сітчасті та просторові. Молекули лінійних полімерів хімічно інертні відносно одна одної і зв'язані між собою лише силами Ван-дер-Ваальса. При нагріванні в'язкість таких полімерів зменшується і тоді вони здатні зворотно переходити спочатку у високоеластичний, а потім й у в'язкотекучій стан. Оскільки єдиним наслідком нагрівання є зміна пластичності, лінійні полімери називають термопластичними. Не слід уважати, що термін «лінійні» позначає прямолінійні, навпаки, для них більше характерна зубаста або спіральна конфігурація, що надає таким полімерам механічну міцність.
Термопластичні полімери можна не лише плавити, але й розчиняти, тому що зв'язки Ван-дер-Ваальса легко руйнуються під дією реагентів.
Розгалужені (щеплені)
полімери більше міцні, ніж лінійні.
Контрольоване розгалуження ланцюгів
служить одним з головних промислових
методів модифікації
Термопластичні полімери отримують за реакцією полімеризації. При ланцюговій полімеризації молекулярна маса наростає майже миттєво, проміжні продукти нестійкі, реакція чутлива до присутності домішок і вимагає, як правило, високих тисків. Не дивно, що такий процес у природних умовах неможливий, і всі природні полімери утворилися іншим шляхом. Сучасна хімія створила новий інструмент — реакцію полімеризації, а завдяки йому великий клас термопластичних полімерів. Реакція полімеризації реалізується лише в складних апаратурах спеціалізованих виробництв, і термопластичні полімери споживач одержує в готовому вигляді.
Реакційність молекули термореактивних полімерів можуть утворитися більше простим і природним шляхом— поступово від мономера до димеру, потім до тримеру, тетрамеруі т. д. Таке об'єднання мономерів, їхню «конденсацію», називають реакцією поліконденсації; вона не вимагає ні високої чистоти, ні тисків, але супроводжується зміною хімічного складу, а часто й виділенням побічних продуктів (звичайно водяної пари). Саме ця реакція реалізується в природі; вона може бути легко здійснена за рахунок лише невеликого нагрівання в найпростіших умовах, аж до домашніх. Така висока технологічність термореактивних полімерів надає широкі можливості виготовляти різні вироби на нехімічних підприємствах, у тому числі на радіозаводах.
Незалежно від виду та складу вихідних речовин і способів одержання матеріали на основі полімерів можна класифікувати в такий спосіб: пластмаси, волокніти, шаруваті пластики, лівки, покриття, клеї.
Полімери здебільшого аморфні речовини. Довгі ланцюжки та велика молекулярна маса не дозволяють полімерам переходити до рідкого стану (швидше наступає хімічний розпад). Проте при підвищенні темпратури з полімерами відбуваються зміни — вони розм'якають і стають дуже пластичними. Температура переходу від крихкого стану до пластичного називається термературоюсклування. Температура склування не є чітко визначеною температурою фазового переходу, а радше вказує на температурний діапазон, у якому відбуваються зміни. При низьких температурах полімери є досить крихкими матеріалами.
Здебільшого використовуються
механічні властивості
Структурні елементи полімерів — макромолекули. Структура макромолекули — це складне поняття, яке включає хімічну будову, довжину і розподіл за довжинами та молекулярними масами, просторове розташування ланок, форму макромолекули. Знання основних параметрів структури дає можливість її регулювати і впливати на властивості.
При розгляді структури полімеру потрібно враховувати: