Автор работы: Пользователь скрыл имя, 19 Января 2011 в 20:11, реферат
Механика грунтов, основания и фундаменты неразрывно связаны с инженерной геологией, изучающей верхнюю часть земной коры как среду инженерной деятельности человека. Для понимания механики грунтов необходимо знать дисциплины механико-математического цикла: сопротивление материалов, теорию упругости, пластичности и ползучести, строительную механику, владеть методами математического анализа.
. Введение.
2. Состав, строение и состояние грунтов.
2.1 Грунтовые основания. Происхождение грунтов.
2.2 Состав грунтов.
2.3 Форма, размеры и взаимное расположение частиц в грунте.
2.4 Структурные связи между частицами грунта.
3. Физические характеристики, классификация грунтов, строение оснований.
3.1 Основные физические характеристики грунтов.
3.2 Классификация грунтов.
3.3 О связи физических и механических характеристик грунтов.
3.4 Геологическое строение оснований.
4. Заключение.
5. Литература.
Московский
государственный строительный
университет
Факультет: Гидротехническое
специальное строительство.
Р
Е Ф Е Р А
Т
По дисциплине:
Механика грунтов.
Москва
2009г.
Содержание.
1. Введение.
2. Состав, строение
и состояние грунтов.
2.1 Грунтовые
основания. Происхождение
2.2 Состав
грунтов.
2.3 Форма,
размеры и взаимное
2.4 Структурные
связи между частицами грунта.
3. Физические
характеристики, классификация грунтов,
строение оснований.
3.1 Основные
физические характеристики
3.2 Классификация
грунтов.
3.3 О связи
физических и механических
3.4 Геологическое
строение оснований.
4. Заключение.
5. Литература.
1.
Введение.
Механика
грунтов, основания и фундаменты
вместе с инженерной геологией и
охраной природной среды
Поведение грунтов под нагрузками сопровождается сложными процессами, во многом отличающимися от поведения конструкционных материалов. Это потребовало разработки специальных экспериментальных методов и теоретического аппарата механики грунтов для описания процессов их деформирования и разрушения.
Нормальная эксплуатация здания или сооружения во многом зависит от того, насколько правильно запроектировано и осуществлено его взаимодействие с основанием. Это же в значительной мере влияет на стоимость и сроки строительства.
Поэтому цель настоящего курса – научить будущих инженеров-строителей обоснованию и принятию оптимальных решений по устройству оснований и фундаментов зданий и сооружений промышленного и гражданского назначения в различных инженерно-геологических условиях.
Курс состоит из двух частей.
В первой части «М е х а н и к а г р у н т о в» изучаются физические и механические свойства грунтов, методы расчета напряженного состояния и деформаций оснований, оценки устойчивости грунтовых массивов, давления грунта на сооружения. Основное внимание здесь уделено методам решения задач, наиболее часто встречающихся в практике промышленного и гражданского строительства.
Механика
грунтов, основания и фундаменты
неразрывно связаны с инженерной
геологией, изучающей верхнюю часть
земной коры как среду инженерной
деятельности человека. Для понимания
механики грунтов необходимо знать
дисциплины механико-математического
цикла: сопротивление материалов, теорию
упругости, пластичности и ползучести,
строительную механику, владеть методами
математического анализа. Проектирование
оснований и фундаментов требует также
знания строительных конструкций, технологии
строительного производства. Техники
безопасности, экономики и организации
строительства. Развитие автоматизированного
проектирования фундаментов связано с
умением специалистов работать с современными
ЭВМ, прежде всего с персональными компьютерами.
2.
Состав, строение и состояние
грунтов.
2.1
Грунтовые основания.
Происхождение грунтов.
Всякое
сооружение покоится на грунтовом основании.
В зависимости от геологического
строения участка застройки строение
основания даже расположенных вблизи
сооружений может быть различным (рис.
1.1). Обычно основание состоит из нескольких
типов грунтов, которые определенным образом
сочетаются в пространстве (сооружения
А, В, Г, Д на рис. 1.1). В частном случае основание
может состоять из грунта одного типа
(сооружение Б на рис. 1.1).
Сооружение и основание составляют единую систему. Свойства грунтов основания, их поведение под нагрузками от сооружения во многом определяют прочность, устойчивость и нормальную эксплуатацию сооружения. Поэтому инженер-строитель должен хорошо понимать, что представляют собой грунты, каковы их особенности по сравнению с другими конструкционными материалами (бетон, железобетон, металл, кирпич и т.п.), каким образом залегают грунты в основании сооружений, что определяет свойства грунтов и грунтовых оснований.
Грунтом называют всякую горную породу, используемую при строительстве в качестве основания сооружения, среды, в которой сооружение возводиться, или материала для сооружения.
Горной породой называют закономерно построенную совокупность минералов, которая характеризуется составом, структурой и текстурой.
Под с о с т а в о м подразумевают перечень минералов, составляющих породу. С т р у к т у р а - это размер, форма и количественное соотношение слагающих породу частиц. Т е к с т у р а - пространственное расположение элементов грунта, определяющее его строение.
Термин «грунт» широко применяют в строительстве, заменяя более широкий термин «горная порода», которая используется в геологии, географии, горном и геолого-разведочном деле. В инженерной геологии термин «горная порода» применяется при описании геологической среды за пределами основания и на допроектных стадиях исследований.
Горная порода, а следовательно, и грунт представляют собой не случайное скопление минералов, а закономерную определенным образом построенную совокупность. Это имеет исключительно большое значение для строительства. Действительно, совокупностей минералов может быть много. Закономерно построенных совокупностей горных пород в природе выделяется большое, но ограниченное количество. Инженерная геология изучает закономерности образования и свойства горных пород как грунтов. Наличие в природе однотипных грунтов, широко распространенных в разных частях Земли, служит основанием для разработки стандартных приемов строительства и применения типовых конструкций фундаментов. Так. Существование слабых водонасыщенных грунтов – илов – уже в древности привело к идее устройства фундаментов; особые свойства не менее широко распространенного лессового грунта потребовали разработки специальных способов строительства и т.п. В связи с этим, прежде чем рассматривать методы расчета и проектирования оснований и фундаментов, необходимо изучить основные типы грунтов, их физические свойства, особенности строения оснований.
Закономерности состава и строения грунтов теснейшим образом связаны с условиями их происхождения. В инженерной геологии происхождение грунтов детально изучено в разных условий. Происхождение положено в основу классификации грунтов (ГОСТ 25100-82).
Все грунты разделяются на естественные – магматические, осадочные,
метаморфические
– и искусственные –
Магматические (изверженные) горные породы образуются при медленном остывании и отвердении огненно-жидких расплавов магмы в верхних слоях земной коры (интрузивные, или глубинные, породы-граниты, диориты, габбро и др.), а также при быстром остывании излившегося на поверхность земли расплава (эффузивные, или излившиеся, - бальзаты, порфиры и др.)
Осадочные горные породы образуются в результате выветривания, перемещения, осаждения и уплотнения продуктов разрушения исходных пород магматического, метаморфического или осадочного происхождения, образовавшихся ранее. В зависимости от степени упрочнения различают сцементированные (песчинки, доломиты, алевролиты и т.п.) и несцементированные осадочные породы (крупнообломочные, песчаные, пылевато-глинистые грунты, лессы, илы, торфы, почвы и т.п.).
Метаморфические горные породы образуются в недрах из осадочных, магматических или метаморфических пород путем их перекристаллизации под воздействием высоких давлений и температур в присутствии горячих растворов. Наиболее типичные метаморфические горные породы – сланцы, мраморы, кварциты, гнейсы.
Горные
породы метаморфического, магматического
происхождения и
В
самых верхних слоях земной коры,
называемых зоной современного выветривания.
Под влиянием колебаний температуры,
изменения состояния и
К
искусственным скальным грунтам относятся
все природные грунты любого происхождения,
специально закрепленные материалами,
приводящими к возникновению жестких
связей (цементные и глинисто-силикатные
растворы, жидкое стекло и т.п.). К классу
нескальных искусственных грунтов относятся
несцементированные осадочные породы,
подвергнутые специальному уплотнению
в природном залегании, насыпные, намывные
грунты, а также твердые промышленные
отходы (шлаки, золы и т.п.).
2.2
Состав грунтов.
Состав грунтов в значительной мере определяет их физические и механические свойства. В связи с этим он достаточно хорошо изучен в разделе инженерной геологии – грунтоведения.
В общем случае, с физических позиций, грунт состоит из трех компонентов: твердой, жидкой, газообразной.
Иногда в грунте выделяют биоту – живое существо. Это оправдано с общенаучной точки зрения и полезно практически, так как жизнедеятельность организмов может оказывать существенное воздействие на свойства грунтов. Активизация жизнедеятельности бактерий, как правило, снижает прочность грунта, а их отмирание приводит к повышению его прочности. Однако пока свойства биоты не нашли отражения в моделях механики грунтов, и мы будем рассматривать грунт как трехкомпонентную систему.
Твердая, жидкая и газообразная компоненты находятся в постоянном взаимодействии, которое активизируется в результате строительства. В зоне влияния промышленных и гражданских сооружений, т.е. на относительно небольших глубинах, в грунтах обычно присутствуют все три компоненты одновременно. На больших глубинах и в некоторых особых условиях грунт может состоять из двух и даже одной компоненты. Например. В зоне вечной мерзлоты в составе грунта может встретится твердая и газообразная компоненты либо только твердая, если все пространство между частицами заполнено льдом. В зоне положительной температуры ниже уровня подземных вод грунт обычно состоит из твердой и жидкой компонент. В механике грунтов такой грунт часто называют «грунтовой массой». Газ в условиях высокого гидростатического давления полностью растворен в воде, но может выделиться из нее при понижении внешнего давления или повышении температуры. При внешних воздействиях, например, от строительства и эксплуатации зданий, однокомпонентная система грунта может переходить в двухкомпонентную, а двухкомпонентная – в трехкомпонентную. При этом, как правило, ухудшаются свойства грунта.