Коррозионное растрескивание

Автор работы: Пользователь скрыл имя, 20 Января 2012 в 21:05, реферат

Краткое описание

Широко распространено определение коррозии под напряже¬нием как увеличение скорости коррозионного процесса под дейст¬вием статических напряжений. Коррозионное растрескивание, как предельный случай коррозии под напряжением, представляет собой полное разрушение металла в результате одновременного воздействия на него напряжений и коррозии. Важно отличать кор¬розионное растрескивание от процесса коррозии, ускоряющегося при воздействии напряжений.

Содержание работы

1. Введение
2. Явление и механизм коррозионного растрескивания
А) Коррозионная среда
Б) Структура и состав
В) Напряжения
Г) Характер коррозионных трещин
Д) Предотвращение коррозионного растрескивания
3. Механизм коррозионного растрескивания
4. Начальная стадия локализованной коррозии
А) Системы сплавов, подверженных межкристаллитному растрескиванию
Б) Системы сплавов, подверженных внутрикристаллитному растрескиванию
5. Развитие трещин
6. Общие закономерности явления коррозионного растрескивания
7. Заключение
8. Список использованной литературы

Содержимое работы - 1 файл

referat.doc

— 147.00 Кб (Скачать файл)

    Очевидно, следует предположить, что хрупкое  межкристаллитное растрескивание сплавов  вызвано содержанием по границам зерен интерметаллических фаз; в  этом случае существуют очень благоприятные условия для развития по границам зерен местной коррозии, а развитие хрупкого разрушения происходит за счет интерметаллической фазы. Для однородных твердых растворов, в которых имеет место межкристаллитное растрескивание (например, в а-латуни), определяющим фактором является адсорбция или выделение растворенных атомов по границам зерен. 

    ОБЩИЕ ЗАКОНОМЕРНОСТИ ЯВЛЕНИЯ  КОРРОЗИОННОГО РАСТРЕСКИВАНИЯ 

    Вполне  очевидно, что сплавы, основу которых  составляют благородные металлы, являются наиболее устойчивыми против коррозионного растрескивания, так как легирующие компоненты таких сплавов всегда менее благородий. Кроме того, для таких сплавов ограничено число коррозионных сред, в которых может происходить растрескивание. С другой стороны, для такого очень активного металла, как магний, все легирующие компоненты более благородны, поэтому магниевые сплавы сильно подвержены коррозионному растрескиванию. Для магния даже вода является активной коррозионной средой.

    Среди специальных групп сплавов, не подверженных коррозионному растрескиванию, можно отметить сплавы золота, палладия и платины.

    Однако  для сплавов серебра условия  для коррозионного растрескивания более благоприятны. Во-первых, серебро часто используется в виде сплава с более благородными металлами, такими, как золото, палладий и платина; во-вторых, серебро быстро вступает .в реакцию с сильными окислителями, такими, как азотная и хромовая кислоты, а также с соляной кислотой и хлорным железом. Предел устойчивости для этих сред лежит примерно при 40 ат. % Аu, так что коррозионное растрескивание будет иметь место во всех сплавах с золотом, содержащих менее 58,5 вес. % золота. В связи с этим имеются многочисленные примеры коррозионного растрескивания сплавов серебра, содержащих золото и палладий, применяющихся в зубоврачебном деле. Коррозионное растрескивание этих сплавов наблюдалось после очистки их в соляной кислоте в процессе производства. С другой стороны, сплавы серебра, содержащие менее благородные компоненты, не подвержены коррозионному растрескиванию. Это подтвердилось при испытании однородных сплавов системы Аu—Zn, содержащих 25 ат. % Zn, и сплавов системы Ag—А1, содержащих 13 ат. % А1. Образцы из этих сплавов, испытываемые под напряжением в 2%-ном растворе FeС3, не подвергались коррозионному растрескиванию даже в течение продолжительного времени испытания.

    Медные  сплавы более подвержены коррозионному  растрескиванию. Число более благородных легирующих компонентов для меди не меньше, чем для серебра, но основная опасность обусловлена тем, что в любой среде, содержащей хотя бы незначительное количество аммиака, происходит коррозионное растрескивание медных сплавов. Все сплавы, содержащие небольшое количество золота, использующиеся в производстве ювелирных изделий, являются сплавами на медной основе. Из всех использующихся сплавов меди с золотом только один сплав, содержащий 75 вес.% золота, не подвержен коррозионному растрескиванию. Для остальных сплавов их устойчивость зависит от коррозионной среды и предела устойчивости.

    Предел  устойчивости для сплавов системы Сu—Аu в растворе аммиака составляет примерно 20 ат.%   Аu, так что сплавы, содержащие 50 вес. % золота, не подвержены коррозионному растрескиванию в этой среде. Но в 2 %-ом растворе FeС3 такие сплавы, содержащие меньше 35 ат.% Аu, подвержены коррозионному растрескиванию. Поэтому в ювелирном деле следует применять сплавы, содержащие не менее 58,5 вес.% золота, с использованием их при возможно   более низких   напряжениях.   Однако в случае   технического   использования,   включающего    наличие в сплаве внутренних напряжений и воздействие коррозионной среды (например, изготовление перьев для авторучек), такие сплавы недостаточно   устойчивы.   Но   если   часть   меди   в   этих   сплавах заменять серебром   (по весу), как это часто делается на практике, то атомная доля золота в сплаве увеличивается и соответственно увеличивается сопротивление коррозионному растрескиванию.

    Особое  внимание следует уделить такому важному сплаву, как латунь, где  медь легирована менее благородным  компонентом (цинком) и поэтому, согласно правилам, не должна подвергаться коррозионному растрескиванию. Однако практически очень часто происходит сезонное растрескивание латуни. Тщательное исследование показывает, что коррозионное растрескивание латуни происходит только в аммиачных средах, тогда как раствор FeС3, концентрированные кислоты НС1 и НNОз вызывают только общую поверхностную коррозию.

    Это отклонение от правил вызвано особым поведением меди в аммиачной среде, в которой образуются комплексные ионы с медью, что вызывает характерный тип коррозии, не свойственной другим средам. В растворах цианистого калия также образуются комплексные ионы, но в отличие от аммиака эта среда не вызывает коррозионного растрескивания сплавов систем Сu—Аu и Сu—Au, хотя она, подобно царской водке, вызывает коррозию золота.

    Все остальные технически пригодные металлы менее благородны, чем водород. Из всех технических металлов наименее благородным является магний, в результате чего все легирующие компоненты всегда более благородны, что и обусловливает сильную подверженность магниевых сплавов коррозионному растрескиванию Даже вода, являющаяся для магния активной коррозионной cредой, при наличии внутренних напряжений может вызвать коррозионное растрескивание магниевых сплавов. Поэтому использование таких сплавов в технике в значительной степени ограничено. В результате небольшой растворимости алюминия и цинка в магнии сплавы магния с этими компонентами пересыщены при комнатной температуре, вследствие чего всегда приходится решать вопрос о том, преобладает ли совершенно однородное состояние сплава или в сплаве имеются субмикроскопические выделения второй фазы, вызывающие коррозионное растрескивание. Однако исследования автора, проводимые с магниевыми сплавами, содержащими примерно 1 ат. % А1 и имеющими совершенно однородную структуру, показали, что, несмотря на отсутствие выделений второй фазы, происходит коррозионное растрескивание сплавов.

    Более стойкими против коррозионного растрескивания являются алюминиевые сплавы, особенно если они легированы менее благородным элементом — магнием. Согласно общим правилам, коррозионному   растрескиванию   подвержены    только   те    алюминиевые сплавы, которые содержат цинк и медь, а сплавы системы А1—Mg не растрескиваются даже в пересыщенном состоянии, что неоднократно подтверждалось исследованиями.  
 
 
 
 
 
 
 
 
 
 
 

Заключение 

    Правильность  изложенных выше обобщенных гипотез, относящихся к взаимодействию электрохимических и механических факторов, вызывающих хрупкое разрушение пластичных металлов, подтверждается успешным применением их к различным системам сплавов. Новые представления о механизме и динамике процесса растрескивания и о характере границ зерен и субструктурных границ позволяют объяснить многие явления процесса более точно и подробно. Изложенный механизм растрескивания подчеркивает необходимость изучения различных систем сплавов с точки зрения изучения их структурных и электрохимических свойств, которые влияют на возникновение локальных коррозионных разрушений, и изучения тех факторов, которые влияют на образование и развитие трещины. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Литература

    В основу реферата был взят сборник статей зарубежных авторов: «Коррозионное растрескивание и хрупкость» (1962г.)

    Список  авторов и их статьи:

1.  D.   K.   Priest,   F.   H.   Beck    and   M.   G.   F o n t a n a,    Trans.   ASM* 47, 473 (1955).

2.  A. Morris,   Trans. AIME, 89, 256 (1930).

3.  C. Edeleanu,  J.   Inst. Metals, 80,  187 (1952).

4.  P. T. Gilbert  and   S.    E.   Madden,  J.   Inst.  Metals,   77, 237 (1950).

5.  U. R. Evans,    Symposium   on   Properties   of  Metallic Surfaces, p. 264, Inst. of Metals, London 1953.

6.  F. A. Champion,  Symposium   on   Internal   Stresses  in   Metals   and Alloys   p. 468, Inst. of Metals, London 1948.

7.   H    L.   Logan,  J.   Research Natl. Bur. Standards, 48, 99 (1952).

8. G. R. Irwin and J. A. Kies, Welding J., 31, 95(1952); G. R. Irwin, Conference on Brittle Fracture Mechanics, p. 169, Natl. Research Council Rept., May, 17, 1954.

9.  W. D.   Robertson,    Trans. AIME, 188, 791 (1Q50).

10.  D. H. Thompson   and A. W. T r a c y,  J. Metals, 1, 100 (1942).

11.  R. D. Heidenreich,   R. McNulty    and   R.   C.   Gerould,   Trans. AIME, 166, 15 (1946).                                                                           

12.  M. R. Pick us   and E.   R.   Parker,  J.   Metals, 3, 792 (1951).

S. Harper  and   A.  H.   Cottrell,   Proc.   Phys. Soc.. B63, 331 (1950).

E.   N.  da   C.   Andrade   and   R.   F.   Y.   Randall,   Nature,    162,   890

(1948).

J. W. Menter and Hall E. O., Nature, 165, 611 (1950).

13.  J. J. Harwood,   Corrosion, 6, 249 (1950).

14.  F. D. Coffin   and S.   L.   Simon,  J. Appl. Phys., 24, 1333 (1953).

15.  A.   H.  Cottrell,   Dislocations   and   Plastic   Flow  in   Crystals,  p. 55,. Oxford 1953.

Информация о работе Коррозионное растрескивание