Автор работы: Пользователь скрыл имя, 17 Января 2012 в 14:13, курсовая работа
Электроконтактное нанесение покрытий характеризуется высокой производительностью, низкой энергоемкостью, минимальной зоной термического влияния тока на металл вследствие малой длительности импульса, отсутствием необходимости в использовании защитной атмосферы ввиду кратковременного термического воздействия на материал покрытия, обеспечивает высокие гигиенические условия труда.
Недостатки
способа ЭКНП и
возможности их устранения
Широкое
внедрение способа
Как известно, дальнейшее увеличение износостойкости материалов при одновременном сокращении расхода легирующих элементов возможно только при широком использовании композиционных материалов, твердая составляющая которых является диэлектриком. Однако по результатам исследований Радомысельского И. Д. и Рыморова Е. В. [8] известно, что критическая концентрация компонентов-диэлектриков не превышает 1-2% от массы. При превышении указанных пределов происходит нарушение стабильности электроконтактного процесса в результате разделения токопроводящих частиц порошкового материала частицами с высоким электрическим сопротивлением. Тем не менее, на практике для обеспечения требуемых эксплуатационных показателей покрытия должны содержать 5-10% и более функциональных наполнителей. Практически нанести покрытия этих составов электроконтактным методом невозможно.
Меры, применяемые в настоящее время для устранения указанного недостатка малоэффективны. Введение высоко- электропроводных компонентов не решает проблемы. Даже введение в шихту меди (до 8% от массы) не позволяет снизить электросопротивление порошка. Регулируя соотношение размеров частиц наполнителя и матрицы можно увеличить содержание диэлектриков в шихте без повышения его критического начального электросопротивления. Однако такое повышение (в среднем до 8% от массы) не позволяет значительно увеличить износостойкость порошкового материала.
Пробой
неэлектропроводного
Следующим существенным недостатком ЭКН порошкового материала является быстрый износ роликов-электродов электроконтактных установок. С помощью ролика-электрода прикладывается давление к уплотняемому и припекаемому порошковому слою. Так как твердые частиц износостойкого материала находятся в непосредственном контакте с роликом-электродом происходит быстрый абразивный износ последнего.
Для устранения указанного недостатка, а также для предотвращения налипания порошка на контактную поверхность роликового электрода между последним и порошковым слоем вводят технологическую латунную ленту толщиной 0,1-0,2 мм, ограничивают давление 30-50 MПa, используют строго заданные режимы наплавки, выполняют электрод из легированной высокопрочной стали. Все эти способы обладают ограниченными технологическими возможностями и резко снижают эффективность электроконтактного способа нанесения покрытий.
При ЭКН возникают трудности с применением ферромагнитных порошков. В результате взаимодействия электрического тока, проходящего по детали, и его магнитного поля с током, проходящим через электрод и слой порошка, и его магнитным полем, происходит выброс ферромагнитного порошка из зоны уплотнения и спекания, в результате чего покрытие формируется с большим количеством пор, наплывами, а коэффициент использования порошка не превышает 0,8. Для устранения подобного явления применяют постоянный электрический ток, используют порошковые материалы в виде паст, предварительное плазменное или газопламенное напыление, применение порошкового материала, заключенного в полиэтиленовую оболочку. Последний способ позволяет также повысить стойкость электрода, предотвращает окисление порошка на первом этапе процесса, дает возможность точно дозировать количество порошка.
С
целью повышения прочности
Осуществляют двухстадийное формирование и нагрев припекаемого покрытия. При этом первоначально к слою прикладывают удельное давление в пределах 0,05–0,15 МН/м, которое частично уплотняет порошок не вызывая деформации его микровыступов и разрушения окисных пленок. В результате нагрева образуется слой большой пористостью (до 30%). Вторая стадия начинается тогда, когда температура порошка достигает 0,8 Тпл и характеризуется пропусканием тока плотностью 0,25–0,5 кА/мм2 и приложением удельного давления, не превышающего 0,65 МН/м. Получают высокоплотные покрытия с прочностью сцепления 180–200 МПа. Применяют также нанесение покрытия в три стадии, последующую горячую обкатку, специальную подготовку поверхности, нанесение подслоя.
Все эти способы обладают определенными преимуществами и позволяют решать конкретные технологические задачи. Наиболее широкими возможностями обладает способ, основанный на применении порошкового материала, заключенного в полимерную оболочку. Однако полимерная оболочка не является электропроводной, поэтому с целью обеспечения возможности электроконтактной наплавки оболочку армируют частицами шихты. Это несколько снижает стойкость электродов контактных установок. Полимерная оболочка не обладает достаточной прочностью и не предотвращает выдавливание порошка из зоны деформации. Остатки оболочки загрязняют ролик-электрод. Невозможно предварительное изготовление порошкового материала методами порошковой металлургии. Все эти недостатки должны устраняться при применении металлической оболочки. Применение металлической оболочки при формировании порошковых материалов является известным приемом в различных технологических процессах.
Рис.
12. Схема процесса электроконтактной
наплавки порошкового материала, заключенного
в металлическую оболочку: 1 – электроды
электроконтактной установки; 2 – металлическая
оболочка; 3 – порошковый материал; 4 –
наплавляемая заготовка; 5 – источник
питания
Для подтверждения выдвинутых положений были выполнены следующие опыты.
Производили наплавку порошковым материалом без оболочки и в оболочке. Наплавка порошка без оболочки осуществлялась известным способом. Для наплавки по предлагаемому способу шихту, состоящую из порошков сплава ПГ-С1 и углеродистого феррохрома ФХ800, засыпали в оболочку (имевшую вид трубки диаметром 5 мм) из стали 08кп. Полученную заготовку протягивали до диаметра 4 мм, продували аргоном, герметизировали и вновь протягивали – до диаметра 3 мм. Затем производили электроконтактную наплавку порошкового материала, заключенного в металлическую оболочку, на пластину из стали СтЗ толщиной 10 мм. Исследовали зависимость прочности сцепления от параметров режима (тока Iсв, времени протекания импульса тока tи, длительности паузы между импульсами tп, усилия па электроде Р). Прочность сцепления покрытия с основным металлом определяли путем отрыва штифта приложенной силой по методике [7].
При
оптимальных режимах наплавки прочность
сцепления порошкового
Проведенные
сравнительные испытания с
появляется возможность снижения напряжений в наплавленном слое, так как оболочка является своеобразной мягкой прослойкой между основным металлом и покрытием.
С
целью определения возможности
увеличения количества неэлектропроводных
компонентов в шихте было изучено температурное
поле при электроконтактной наплавке
порошка ПГ–С1+ФХ800 (с различным количеством
карбида бора), заключенного в металлическую
оболочку.
Таблица 2. Сравнительная характеристика физико–механических свойств покрытий
Наличие оболочки | Материал покрытия | e | HRC |
Пористость,% | sсц,, МПа |
Нет Есть |
ПГ–С1
ПГ–С1+50% ФХ800 ПГ–С1 ПГ–С1+30% ФХ800 ПГ–С1+50% ФХ800 |
1,0
2,5 1,5 2,9 3,5 |
50
60 54 59 61 |
5…7
8…10 1…2 1…2 2…3 |
120…140
120…140 280…320 300…320 300…320 |
Примечание. Здесь e – относительная износостойкость.
Рис.
13. Температурное поле в начальный
(а) и конечный (б) моменты наплавки
порошка, заключенного в металлическую
оболочку: 1 – электрод электроконтактной
установки; 2 – оболочка; 3 – порошковый
материал; 4 – основной металл; 5 – источник
питания; ·
– места размещения термопар
Температура измерялась с помощью хромель–алюмелевых и платино–платинородиевых термопар. Места расположения термопар показаны на рис. 13. Градуировка термопар проводилась по точке кипения воды (373 К) и температуре плавления свинца (602 К). Регистрация сигнала осуществлялась шлейфовым осциллографом К12–22.
Как видно из рис. 13, в начальный момент электроконтактной наплавки температура в срединной области порошкового материала значительно ниже, чем температура оболочки. Это объясняется низкой электрической проводимостью порошка: практически в данный момент весь ток протекает по металлической оболочке. Однако нагрев порошка теплом, получаемым от оболочки, и уплотнение его усилием, приложенным к электроду, приводит к снижению электрического сопротивления порошкового слоя, его дальнейшему нагреву и уплотнению за счет пластической деформации частиц; происходит выравнивание температуры по сечению порошкового сердечника. Дальнейший нагрев приводит к перегреву последнего, что при неправильно выбранном режиме (большом токе или увеличенной длительности импульса) может вызвать нарушение стабильности электроконтактного процесса, расплавление порошкового материала, прожог и выплеск расплавленного металла.
В
табл. 3 приведены физико–механические
свойства наплавленного слоя. Увеличение
количества карбида бора до 20% приводит
к резкому возрастанию пористости, снижению
пластических свойств покрытия, а также
износостойкости вследствие ухудшения
прочности сцепления между частицами
порошкового материала (о чем свидетельствует
выкрашивание твердой составляющей композиционного
слоя при испытаниях на износостойкость).
Таблица 3. Физико-механические свойства наплавленного слоя при различном содержании карбида бора
Материал покрытия | e | Пористость,% | аН, МДж/м2 | Характеристика поверхности |
ПС1
(ПГ–С1+50% ФХ800)
ПС1+5% В4С ПС1+10% В4С ПС1+20% В4С ПС1+30% В4С |
1,0
1,3 1,6 1,4 0,5 |
2…3
3…5 3…5 5…10 10…12 |
0,59
0,54 0,50 0,42 0,26 |
Чистая
Чистая Чистая Видны поры Есть трещины |