Автор работы: Пользователь скрыл имя, 13 Октября 2011 в 14:51, реферат
Инженерное моделирование строительных конструкций как инструмент исследования напряженно-деформированного состояния. Математическое моделирование с учетом дефектов и повреждений в строительных конструкциях, осадок системы основание-фундамент здания. Понятие. Характеристика программно-расчетных комплексов. Примеры практической реализации. Условия распространения результатов моделирования на реальные конструкции. Оценка адекватности модели
Введение……………………………………………………………………….3
Математическое моделирование……………………………………………..4
Характеристика программно-расчетных комплексов………………………6
Примеры практической реализации…………………………………………11
Учет дефектов в расчетах строительных конструкций….…………………14
Оценка адекватности модели………………………………………………...15
Используемая литература…………………………………………………….16
Министерство образования Российской Федерации
Пермский
Государственный Технический
Кафедра строительных конструкций
Реферат на тему:
«Инженерное
моделирование строительных конструкций
как инструмент исследования напряженно-деформированного
состояния. Математическое моделирование
с учетом дефектов и повреждений
в строительных конструкциях, осадок
системы основание-фундамент
Работу выполнила:
студентка группы
Работу проверил:
Патраков А.Н.
Пермь,
2010г.
Оглавление
Введение
В последнее десятилетие экономически и методически целесообразно проведение исследований сложных сооружений с применением расчетных моделей.
Моделирование - построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.
Существует два основных метода моделирования – физическое (инженерное) и математическое.
Физическое моделирование, основанное на теории простого или расширенного подобия, по мере усложнения задач исследований все менее целесообразно, так как не решает задач снижения трудоемкости и стоимости изготовления моделей, соблюдения планируемых сроков эксперимента.
Поэтому в последнее время более целесообразно применять математические модели строительных конструкций, используя множество различных программных-комплексов.
Сочетание при исследовании сложных строительных конструкций методов физического и математического моделирования обусловливает целесообразность применения принципа декомпозиции (членения) объекта исследований на более простые элементы, раздельные испытания которых потребуют гораздо меньше ресурсов по сравнению с испытаниями всей системы. Особенно этот принцип эффективен при исследовании сооружений, состоящих из большого количества однотипных элементов и узлов.
Рассматривая процесс исследования строительных конструкций как некоторую систему, необходимо выделить в ней три основные подсистемы:
-
экспериментальные
-
расчетные исследования на
-связь
между экспериментом и
Математическое моделирование
Любое математическое моделирование строится на формировании расчетной схемы сооружения. Формирование расчетной схемы сооружения – это переход от реального объекта или конструкции к расчетной модели путем отбора наиболее существенных (значимых для конкретной ситуации) особенностей, их идеализация и схематизация, допускающая последующую алгоритмизацию и математическую обработку.
При изучении поведения сложной системы её расчленяют на более простые подсистемы: плоские или пространственные рамы, несущие стены и их фрагмен-ты, плиты перекрытий, фундаменты.
Рис.1. Декомпозиция каркаса многоэтажного здания
а - подсистема "ригель"; б - подсистема "плита"; в - подсистема "швы"
Однако при выборе расчетной схемы следует придерживаться следующих правил:
1.
Аппроксимирующая модель
Например: при расчетах на прочность изгибаемая балка должна противостоять моменту и поперечной силе, а при оценке жесткости для балки определяется прогиб; подпорная стенка рассчитывается на устойчивость против опрокидывания и на прочность основания по сжимающим напряжениям; сваи рассчитываются на вдавливание/ выдергивание по грунту и на прочность по материалу (при внецентренном сжатии/расстяжении), кроме того, для изгибаемой сваи проверяется заделка в основание, а при расчете по перемещениям для фундамента определяется осадка.
2.
Принимаемая расчетная
3. Расчетная
модель работы сооружения
Инженерная схематизация строительного объекта связана с использованием допущений (гипотез), позволяющих математически описать учитываемые реальные свойства конструкций и материалов. Приемы схематизации – общепринятые постулаты: закон Гука, закон Кулона, гипотеза плоских сечений, расчет по недеформированной схеме, замена реальной конструкции стержнем (колонн, балок перекрытий), пластинкой или оболочкой (плит покрытий, перекрытий, несущих стен).
Формирование расчетной схемы в строительном проектировании включает три группы допущений:
1. схематизация
геометрической формы
2. схематизация свойств материалов.
3. схематизация нагрузок.
Реальный объект заменяется идеализированным деформируемым телом с изученными топологическими свойствами: стержень (балка), стержневой набор (рама, ферма), арка, плоская стенка, деформируемая в своей плоскости, изгибаемая пластинка, пространственное массивное тело и определенностью предполагаемого вида напряженно-деформированного состояния: плоское напряженное состояние, плоское деформированное состояние, трехмерное
напряженное состояние.
Характеристика программно-расчетных комплексов
В
настоящее время существует множество
программно-расчетных
ПК "SCAD Office"
Вычислительный комплекс SCAD – универсальная вычислительная система, предназначенная для прочностного анализа строительных конструкций различного назначения на статические и динамические воздействия, а также ряда функций проектирования элементов конструкций. В основе программы лежит метод конечных элементов.
SCAD включает развитую библиотеку конечных элементов для моделирования стержневых, пластинчатых, твердотелых и комбинированных конструкций, модули анализа устойчивости, формирования расчетных сочетаний усилий, проверки напряженного состояния элементов конструкций по различным теориям прочности, определения усилий взаимодействия фрагмента с остальной конструкцией, вычисления усилий и перемещений от комбинации загружений.
SCAD office содержит несколько компонентов, при помощи которых является возможным конструировать различные типы сечений конструкций:
Конструктор сечений – формирование произвольных составных сечений из стальных прокатных профилей и листов, а также расчет их геометрических характеристик, необходимых для выполнения расчета конструкций;
Вест – определение нагрузок и воздействий на строительные конструкции;
Кросс – определение коэффициентов постели при расчете фундаментных конструкций на упругом основании на основе моделирования работы многослойного грунтового массива по данным инженерно-геологических изысканий;
Арбат – для проверки несущей способности или подбора арматуры в элементах железобетонных конструкций;
Монолит – проектирование железобетонных монолитных ребристых перекрытий, образованных системой плит и балок, опирающихся на колонны и стены;
Камин – для проверки несущей способности конструктивных элементов каменных и армокаменных конструкций и т.д.
Возможности ПК "SCAD Office" позволяют решать проектные задачи не только в традиционной для настоящего времени прямой постановке: архитектурная идея —> пространственное моделирование —> расчет —> проект —> строительство объекта; но и в обратной: объект —> идея реконструкции —> обследование —> пространственное моделирование —> итерационный расчет —> оценка физического износа —> проект реконструкции —> реконструкция объекта.
В
рассматриваемой цепочке
Решение вопроса о физическом износе несущих строительных конструкций зданий можно представить в виде следующей последовательности:
1. Проведение
технического обследования
2. Проведение анализа конструктивной схемы здания и создание эталонных (без учета дефектов, деформаций, повреждений) пространственных моделей: архитектурной модели с помощью программных комплексов архитектурно-строительного проектирования (ArchiCAD, AutoCAD) и расчетной модели с помощью ПК;
3. Комплексный
расчет эталонной модели
4. Внесение
корректировок в расчетную
5. Итерационный
комплексный расчет модели
6. Выявление
наиболее опасных зон
7. Оценка
степени физического износа
ПК "LIRA"
ПК «ЛИРА-WINDOWS» - многофункциональный программный конечно-элементный комплекс для расчета, исследования и проектирования строительных конструкций различного назначения: высотных зданий, покрытий и перекрытий больших пролетов, подпорных стен, фундаментных массивов, каркасных конструкций промышленных цехов, отдельных элементов (колонн, ригелей, ферм, панелей) и других.